
®

Irinos EC

© 2019-2020 Messtechnik Sachs GmbH

Diese Betriebsanleitung wurde für die Darstellung in einem Webbrowser im HTML-Format
optimiert. Verwenden Sie die PDF-Version nur, wenn kein Zugriff auf die Online-Hilfe möglich
ist.

3

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Table of Contents

1. Overview

 9

2. Irinos EC Users Manual

 11

2.1 Introduction ... 12

2.1.1 Revision History ... 13

2.1.2 Legal Notes .. 13
2.1.2.1 Terms and conditions of use for software & documentation .. 13

2.1.2.2 Warning notice system ... 16

2.1.2.3 Qualified personnel ... 17

2.1.2.4 Disclaimer ... 17

2.1.3 Preface ... 17

2.1.4 Safety Instructions .. 19

2.2 System Overview ... 24

2.2.1 Modularity .. 25

2.2.2 Syncronization & Speed .. 27

2.2.3 Master vs. Slave ... 28

2.2.4 Power Supply .. 29

2.3 Product Descriptions ... 29

2.3.1 Basic Composition Irinos-EC - Box with EC-Link Interface 31

2.3.2 EC-TFV for inductive probes ... 35

2.4 Pin assignments .. 37

2.4.1 Power supply 24V ... 37

2.4.2 Ethernet .. 38

2.5 Assembly ... 39

2.5.1 Checking the delivery ... 39

2.5.2 Mounting location .. 41

2.5.3 Mounting .. 41

2.5.4 Wiring ... 43
2.5.4.1 EC-Link Wiring ... 44

2.5.4.2 Connecting Ethernet ... 45

2.5.4.3 Connecting the power supply ... 46

2.5.5 Insert Measuring Modules ... 48

2.6 Setup & First Steps ... 48

2.6.1 Box addressing ... 49

2.6.2 Network configuration .. 50

2.6.3 Irinos-Tool .. 51

2.6.4 Web-Server ... 52

2.7 Software Interface ... 56

2.7.1 NmxDLL Quick Overview .. 58

2.7.2 ASCII- / Telnet-Interface ... 59

2.7.3 MscDLL Quick Overview .. 62

2.8 Troubleshooting & First Aid .. 63

2.8.1 Diagnostic events ... 63

4

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Table of Contents

2.8.2 Diagnostic Memory .. 72

2.8.3 First Aid "Network Connection" .. 73

2.8.4 Maintenance, Cleaning & Disposal ... 75

2.9 Application Notes .. 77

2.9.1 Incremental Encoders ... 77
2.9.1.1 Referencing for absolute measurement ... 77

2.9.1.2 Input frequency ... 78

2.9.1.3 Interpolation (only 1Vpp) ... 78

2.9.2 Power consumption .. 81

2.9.3 Storing data in the non-volatile memory .. 81

2.10 Specifications & Dimensions ... 82

2.10.1 Common specifications .. 83

3. Irinos Tool Users Manual

 85

3.1 Introduction ... 86

3.1.1 Imprint .. 86

3.1.2 Revision history .. 86

3.1.3 Terms of use for software & documentation ... 87

3.1.4 Preface ... 89
3.1.4.1 Purpose .. 89

3.1.4.2 Scope of this manual ... 90

3.1.4.3 Intended use .. 90

3.1.4.4 Required knowledge ... 90

3.1.4.5 Further documentation ... 91

3.1.4.6 Firmware & Software version .. 91

3.1.5 About this help ... 91

3.1.6 System overview ... 91

3.2 Quick start guide .. 93

3.2.1 Requirements ... 93

3.2.2 PC network settings ... 93

3.2.3 Irinos configuration and connection check .. 94

3.3 PC network connection ... 97

3.3.1 Ethernet connection ... 97

3.3.2 Network interfaces ... 98

3.3.3 Network settings .. 100
3.3.3.1 IP configuration using DHCP ... 100

3.3.3.2 IP configuration without DHCP ... 102

3.4 Irinos-Tool ... 104

3.4.1 General ... 104

3.4.2 Installation ... 104

3.4.3 Starting the Irinos-Tool ... 104

3.4.4 IP configuration .. 105

3.4.5 Direct IP settings .. 108

3.4.6 Checking the connection via the MscDll .. 109

3.4.7 Channel Assignment / Selecting incremental input type 111

5

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Table of Contents

3.4.8 Inventory ... 112
3.4.8.1 Setting date/time .. 114

3.4.8.2 Event configuration ... 115

3.4.9 Static measurement ... 116

3.4.10 Dynamic measurement .. 117

3.4.11 Digital in- & outputs ... 118

3.4.12 Diagnostic memory .. 119

3.4.13 Firmware update .. 120
3.4.13.1 Version numbers .. 120

3.4.13.2 Executing the update ... 121

3.4.14 Incremental channel diagnostics ... 124
3.4.14.1 Live view (only 1Vpp) ... 124

3.4.14.2 History (only 1Vpp) .. 130

4. NmxDLL Reference Guide

 133

4.1 Introduction ... 134

4.1.1 Imprint .. 134

4.1.2 Revision history .. 134

4.1.3 Legal notes ... 135
4.1.3.1 Terms of use for documentation & software .. 135

4.1.3.2 Qualified personnel .. 138

4.1.3.3 Disclaimer ... 138

4.1.4 Preface ... 138
4.1.4.1 Purpose .. 138

4.1.4.2 Scope of this reference manual ... 138

4.1.4.3 Required knowledge .. 138

4.1.4.4 Further documentation ... 138

4.2 Nmx DLL Overview ... 139

4.2.1 Static vs. Sampling ... 140

4.2.2 Sampling Speed with Irinos .. 141

4.2.3 Data Types ... 148

4.2.4 Technical Background .. 149

4.2.5 Limitations .. 149

4.2.6 Hardware Requirements .. 150

4.2.7 Versions .. 150

4.2.8 INI-File .. 152

4.2.9 .NET Wrapper DLL .. 152

4.3 API (programming interface) .. 153

4.3.1 Function calls overview .. 153

4.3.2 Function Return Codes (NMX_STATUS) .. 160

4.3.3 Connection Handle ... 162

4.3.4 Trigger Modes .. 163

4.3.5 Miscellaneous .. 164
4.3.5.1 NMX_GetDllVersion_1 ... 164

4.3.5.2 NMX_SystemReset_1 .. 165

4.3.5.3 NMX_ChannelSetParameter_1 ... 166

6

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Table of Contents

4.3.5.4 NMX_ChannelSetConfig_1 .. 170

4.3.6 Connecting / Disconnecting ... 173
4.3.6.1 NMX_DeviceIPv4Open_1 .. 173

4.3.6.2 NMX_DeviceClose_1 .. 175

4.3.7 Notifications ... 176
4.3.7.1 NMX_RegisterMessage_1 ... 178

4.3.7.2 NMX_RegisterCallback_1 ... 180

4.3.8 Get device information ... 183
4.3.8.1 NMX_GetBoxCount_1 ... 183

4.3.8.2 NMX_GetBoxInfo_1 .. 184

4.3.8.3 NMX_UpdateChannelInfo_1 ... 188

4.3.8.4 NMX_GetChannelCount_1 .. 189

4.3.8.5 NMX_GetChannelInfo_1 .. 190

4.3.8.6 NMX_GetDigitalInputInfo_1 ... 195

4.3.8.7 NMX_GetDigitalOutputInfo_1 .. 197

4.3.9 Static Measurement (Non-Realtime) ... 198
4.3.9.1 NMX_StaticGet32_1 ... 198

4.3.9.2 NMX_StaticSetMedianDepth_1 .. 204

4.3.9.3 NMX_SetOutputs_1 .. 205

4.3.9.4 NMX_DisableOutputUpdate_1 .. 206

4.3.9.5 NMX_DigitalIoConfig_1 .. 207

4.3.9.6 NMX_DigitalOutputsGetState_1 .. 208

4.3.10 Sampling LowLevel (Time-Triggered Realtime Measurement) 209
4.3.10.1 NMX_Sampling_GetMaxSpeed_1 .. 209

4.3.10.2 NMX_Sampling_Reset_1 ... 210

4.3.10.3 NMX_Sampling_AddChannelsAll_1 .. 211

4.3.10.4 NMX_Sampling_AddChannel_1 ... 212

4.3.10.5 NMX_Sampling_AddDigiInAll_1 .. 214

4.3.10.6 NMX_Sampling_AddDigiInByte_1 ... 215

4.3.10.7 NMX_Sampling_AddDigiOutAll_1 ... 216

4.3.10.8 NMX_Sampling_AddDigiOutByte_1 .. 217

4.3.10.9 NMX_Sampling_PrepareTime_1 .. 218

4.3.10.10 NMX_Sampling_Start_1 .. 220

4.3.10.11 NMX_Sampling_Stop_1 ... 221

4.3.10.12 NMX_Sampling_ReadColumn32_1 ... 221

4.3.10.13 NMX_Sampling_ReadRow32_1 .. 224

4.3.10.14 NMX_Sampling_GetStatus_1 .. 226

4.3.11 Sampling HighLevel (Application-specific Realtime Measurement) 228
4.3.11.1 NMX_Sampling_PreparePosition_1 ... 229

4.3.11.2 NMX_Sampling_PrepareCustomTFT_1 ... 232

4.3.12 Diagnostics ... 235
4.3.12.1 NMX_DiagClearEvent_1 .. 235

4.3.12.2 NMX_DiagGetEventText_1 ... 236

4.3.12.3 NMX_SetDateTime_1 .. 238

4.4 HowTo ... 239

4.4.1 Small Measurement Application .. 239

4.4.2 Establishing a connection .. 239

4.4.3 Closing a connection .. 241

4.4.4 Reading static data .. 242
4.4.4.1 Cyclically (Polling) .. 243

7

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Table of Contents

4.4.4.2 Event based ... 245

4.4.5 Sampling ... 250
4.4.5.1 Start endless time-based sampling .. 252

4.4.5.2 Start time-limited sampling ... 259

4.4.5.3 Stop sampling ... 266

4.4.5.4 Reading sampled data .. 267

4.4.5.4.1 Read Column-Wise .. 268

4.4.5.4.2 Read Row-Wise ... 273
4.4.5.5 Get sampling status ... 277

4.4.5.5.1 Poll sampling status ... 277

4.4.5.5.2 Sampling notifications ... 278
4.4.5.6 Start position triggered sampling ... 284

4.4.5.7 Start TFT high-level sampling .. 288

293Index

Overview

10

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Overview

1 Overview

Diese Web-basierte Hilfe besteht aus 3 Handbüchern:

A. Irinos EC Users Manual

This is the main documentation. Start here.

B. Irinos Tool Users Manual

This documentation describes the operation of the setup and diagnostic

software Irinos-Tool / ITool.

C. NmxDLL Referenz (Software API)

Description of the software interface of the NMX DLL. For software

developers.

24

93

139

Irinos EC Users Manual

12

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

2 Irinos EC Users Manual

2.1 Introduction

This users manual explains the setup, installation and handling of the Irinos

EC measuring system. Read it before using the product.

It has been optimized for viewing on electronic terminals and contains

multimedia content. It is therefore recommended to use the electronic

version with a PC, tablet, smartphone or similar.

At the beginning you find this introduction together with the legal notes and

the safety instructions .

· The System Overview provides a general introduction to the Irinos EC -

System. It is supplemented by the product descriptions and the pin

assignment .

· This is followed by information on the assembly and setup of the

system.

· In addition, you will find information on diagnosis , maintenance,

cleaning and disposal as well as specific application notes .

Imprint

19

24

29

37

39 48

63

75 77

13

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Title Irinos EC

Manufacturer Messtechnik Sachs GmbH

Siechenfeldstraße 30/1

D-73614 Schorndorf

Tel. +49 / 7181 / 26935-0

post@messtechnik-sachs.de

Valid for Measurement modules Irinos EC

Copyright Note © 2019-2020 Messtechnik Sachs GmbH

Trademarks All product names used in this manual are

trademarks of their respective owners.

Material-No. 785-1028

Change notice Subject to change without notice.

Release date 05.06.2020

2.1.1 Revision History

Ve

rsi

on

Dat

e

Changes

A 201

9-

08-

19

First Version

2.1.2 Legal Notes

2.1.2.1 Terms and conditions of use for software & documentation

I. Protection rights and scope of use
Messtechnik Sachs provides operating instructions, manuals,
documentation, and software programs - all collectively
referred to as "LICENSED OBJECT" below - either on portable
data storage devices (e.g. diskettes, CD ROMs, DVDs, etc.), in
written (printed) form or in electronic form, for a fee and/or
free of charge. The LICENSED OBJECT is subject to proprietary
safeguarding provisions among other regulations. Messtechnik

14

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Sachs or third parties have protection rights for this LICENSED
OBJECT. In so far as third parties have whole or partial right
of access to this LICENSED OBJECT, Messtechnik Sachs has the
appropriate rights of use. Messtechnik Sachs permits the user
the use of the LICENSED OBJECT under the following conditions:

1.1) Scope of use for electronic documentation
a) With the acquisition/purchase or relinquishment of a

LICENSED OBJECT, you as the user acquire a simple, non-
transferable right of use with regard to the respective
LICENSED OBJECT. This right of use authorises the user to
use the LICENSED OBJECT for the user's own, exclusively
company-internal purposes on any number of machines within
the user's business premises. This right of use includes
exclusively the right to save the LICENSED OBJECT on the
central processors (machines) used at the location.

b) Irrespective of the form in which operating instructions
and/or documentation are provided, the user may furthermore
print out any number of copies on a printer at the user's
location, providing this printout is printed with or kept in
a safe place together with these complete terms and
conditions of use and other user instructions.

c) With the exception of the Messtechnik Sachs logo, the user
has the right to use pictures and texts from the operating
instructions/documentation for creating the user's own
machine and system documentation. The use of the Messtechnik
Sachs logo requires written consent from Messtechnik Sachs.
The user is responsible for ensuring that the pictures and
texts used match the machine/system or the product.

d) Further uses are permitted within the following framework:
Copying exclusively for use within the framework of machine and
system documentation from electronic documents of all
documented supplier components. Demonstrating to third parties
exclusively under guarantee that no data material is stored
wholly or partly in other networks or other data storage
devices or can be reproduced there.
Passing on printouts to third parties not covered by the
regulation in item 3, as well as any processing or other use
are not permitted.

1.2) Scope of use for software products
For any type of Messtechnik Sachs software including the
associated documentation, the customer shall receive a non-
exclusive, non-transferable and time-unlimited right of use on
a certain hardware product or on a hardware product to be
determined in individual cases. Messtechnik Sachs shall remain
the owner of the copyright as well as of any other industrial
property rights. The customer may make copies for back-up
purposes only. Any copyright notes may not be removed.

2. Copyright note
Every LICENSED OBJECT contains a copyright note. In any
duplication permitted under these provisions, the corresponding
copyright note of the original document concerned must be
included:

15

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Example: © 2019, Messtechnik Sachs GmbH,

D-73614 Schorndorf

3. Transferring the authorisation of use
The user can transfer the authorisation of use re. the
respective LICENSED OBJECT as per these provisions in the scope
and with the limitations of the conditions in accordance with
items 1 and 2 completely to a third party. The third party
must be made explicitly aware of these terms and conditions of
use.

II. Exporting the LICENSED OBJECT
When exporting the LICENSED OBJECT or parts thereof, the user
must observe the export regulations of the exporting country
and those of the acquiring country.

III. Warranty
1. Messtechnik Sachs products are being further developed with
regard to hardware and software. If the LICENSED OBJECT, in
whatever form, is not supplied with the product, i.e. is not
supplied on a data storage device as a delivery unit with the
relevant product, Messtechnik Sachs does not guarantee that the
electronic documentation corresponds to every hardware and
software status of the product. In this case, the printed
documentation from Messtechnik Sachs accompanying the product
is alone decisive for ensuring that the hardware and software
status of the product matches that of the electronic
documentation.
2. The information contained in an item of electronic
documentation can be amended by Messtechnik Sachs without prior
notice and does not commit Messtechnik Sachs in any way.
3. Messtechnik Sachs guarantees that the software program it
created agrees with the change description and program
specification but not that the functions included in the
software run entirely without interruptions and errors or that
the functions included in the software can run or meet the
requirements in all combinations selected by and in all
conditions of use designated by the acquirer.

IV. Liability/limitations on liability
1. Messtechnik Sachs provides LICENSED OBJECTS to allow the
user to use - in conformity with the contract - Messtechnik
Sachs products which require software for proper operation, or
to assist the user in creating the user's machine and system
documentation. In the case of electronic documentation which in
the form of data storage devices does not accompany a product,
i.e. which is not supplied together with that product,
Messtechnik Sachs does not guarantee that the electronic
documentation separately available/supplied matches the product
actually used by the user.
The latter applies particularly to extracts of the documents
for the user's own documentation. The guarantee and liability

16

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

for separately available/supplied portable data storage
devices, i.e. with the exception of electronic documentation
provided on the Internet/Intranet, are limited exclusively to
proper duplication of the software, whereby Messtechnik Sachs
guarantees that in each case the relevant portable data storage
device or software contains the latest status of the
documentation. In respect of the electronic documentation on
the Internet/Intranet, it is not guaranteed that this has the
same version status as the last printed edition.
2. Furthermore, Messtechnik Sachs cannot be held liable for the
lack of economic success or for damage or claims by third
parties resulting from use of the LICENSED OBJECTS by the user,
with the exception of claims arising from infringement of
protection rights of third parties concerning the use of the
LICENSED OBJECTS.
3. The limitations on liability as per paragraphs 1 and 2 do
not apply if, in cases of intent or wanton negligence or lack
of warranted quality, liability is absolutely necessary. In
such a case, the liability of Messtechnik Sachs is limited to
the damage recognisable by Messtechnik Sachs when the specific
circumstances are made known.

V. Safety guidelines/documentation
Guarantee and liability claims in conformity with the
regulations mentioned above (items III and IV) can only be made
if the user has observed the safety guidelines of the
documentation in conjunction with use of the machine and its
safety guidelines or the terms and conditions of use of the
software. The user is responsible for ensuring that the
electronic documentation, which is not supplied with the
product, matches the product actually used by the user.

2.1.2.2 Warning notice system

This users manual contains notes, which you must observe to ensure your

personal safety, as well as to protect the product and connected equipment.

Notes related to your personal safety are highlighted by a yellow

exclamation mark. Notes for property / material damage are without an

exclamation mark. These notices are graded according to the degree of

danger.

Danger

indicates the immediate threat of danger. If it is not avoided, it

will result in death or serious injury.

17

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Warning

indicates a possibly dangerous situation. If it is not avoided, it may

result in death or serious injury.

Caution

indicates a possibly dangerous situation. If it is not avoided, it may

result in injury.

Attention

indicates a possibly harmful situation. If it is not avoided, the product or

related / surrounding equipment may be damaged.

2.1.2.3 Qualified personnel

The product system described in this documentation must only be handled

by qualified personal according to the given scope of work. All

documentation relevant for the scope of work must be observed, especially

the safety and warning notes. Due to its education and experience, qualified

personal is able to identify risks and possible dangers when using this

products / systems.

2.1.2.4 Disclaimer

The content of this documentation has been carefully reviewed to comply

with the documented hard- and software. We can, however, not exclude

discrepancies and do therefore not accept any liability for the exact

compliance. This documentation is reviewed regularly. Corrections may be

contained in newer versions.

2.1.3 Preface

Warning

Carefully read this complete users manual and all related

documentation before setup and use of the Irinos-System. This

applies especially to the safety instruction.

Misuse may lead do death, serious injury, injury or damage of

man, equipment or machine.

18

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Purpose
This users manual contains all relevant information for setup, use and

maintenance of the Irinos-System. Target groups are users and service

technicians, who setup the product or who perform system diagnostics.

Scope of this users manual
This users manual is valid for the industrial measurement system Irinos EC

and related accessories.

Intended use
Irinos EC is a flexible High-Speed measurement system for the industrial

production measurement technology.

The measurement device is not appropriate for use in medical fields or in

explosive areas, for aerospace and for home- or office use. Other fields of

application, which are not mentioned but similar, are also excluded from use.

In safety critical areas, the safety in operation must be ensured by external

equipment (e.g. external emergency stop).

Please note:

Warning

Products from Messtechnik Sachs GmbH must only be used for

applications, which are mentioned in the datasheet or in the

related documentation. If third party products are used, these

must be recommended or permitted by Messtechnik Sachs GmbH.

Proper and safe operation of the products require appropriate

transportation, storage, mounting, usage and maintenance.

Environmental conditions stated in the specification must be

observed as well as notes in the related documentation.

Required knowledge
For the mechanical integration and mounting, solid knowledge and skills in

mechanics and machinery are required.

For the electrical installation and the setup, solid knowledge and skills in

electrics and electrical safety are required.

19

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

For the setup of the measurement application, profund knowledge in

industrial measurement technology is required as well as PC skills.

Further documentation
Please note the short booklet, which is delivered with each Irinos module.

This applies especially to the safety warnings, which are mentioned in it. The

specifications of the Irinos-Boxes can be found in the respective datasheet.

A separate documentation is available for the setup tool "ITool".

For the integration of the software library used for attaching the Irinos to PC

software, a separate reference manual is available.

Firmware version
This users manual is related to firmware version 2.

(Version 2 is the first version. Version number 1 has been skipped to provide

more clarity in regard to the Irinos IR system.)

2.1.4 Safety Instructions

Attention

Damage by opening the device

Do not open the Irinos components. They are designed for use without the

necessity to open them. The measurement box and/or the measurement

system may be damaged. Malfunction or destruction are possible results.

Opening the Irinos components will void the warranty.

20

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Attention

Unintended operating situation

High frequency radiation, e.g. from a mobile phone, can interrupt the

device operation and may lead to malfunction of the Irinos-System.

People or material can be injured or damaged.

Avoid high frequency radiation:

o Do not place sources of radiation next to the Irinos measurement system.

o Turn off devices, which are a source of radiation.

o Reduce the radio performance of radiation emitting devices.

Ensure the compliance regarding electromagnetic compatibility.

Warning

Electric shock

An insufficient earth grounding and/or electrical separation from

the mains can lead to injury or damage of people or machine.

Please note:

o Only use PELV supply circuits according to IEC60204-1

(Protective Extra-Low Voltage, PELV).

o Observe the additional requirements for PELV supply circuits

according to IEC60204-1.

Only use power supplies, which allow a safe separation of the

operating voltage and the load voltage according to IEC60204-1.

21

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Warning

Danger at unprotected machinery

For the operation of machinery, the following has to be observed:

At unprotected machinery danger may exist according to the

results of a risk analysis. This danger may lead to personal injury.

Personal injury can be avoided according to a risk analysis by the

following actions:

o Additional protection equipment at the machinery. Thereby

especially programming, parametrization and wiring of the

peripherals must comply with the safety performance (SIL, PL or

Cat.), which has been assessed in a risk analysis.

o Appropriate use of the Irinos-System, which is verified by a

functional test at the machinery. This allows identifying

programming, parametrization or wiring mistakes.

o Documentation of the test results in the relevant safety

documentation.

Attention

Electrostatic sensitive devices

An Irinos-Box contains electrostatic sensitive devices. It is possible that

electrostatically sensitive equipment is destroyed by energies and voltages

that are far less than the human threshold of perception.

Do not open the Irinos-Box. Thereby you avoid touching the sensitive

devices.

22

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Attention

Damage of the Irinos-System by transport and storage

If the Irinos-System is transported or stored without packaging, shocks,

vibrations, pressure or moisture may harm the Irinos components. Damaged

packaging signals, that environmental conditions have already affected the

Irinos components.

The Irinos components and/or the Irinos-System may be damaged.

Do not dispose the original packaging. Proper packaging is required during

transport and storage.

Attention

Damage due to condensation

If the Irinos components or the Irinos-System are exposed to low

temperatures or high temperature changes, moisture may cover the Irinos-

System or the components.

Moisture leads to short circuit and damages the Irinos-System.

To avoid damage, please observe the following advices:

o Wait before use, until the temperature of the Irinos-System has adjusted

to the surrounding temperature.

o Avoid direct heat radiation next to the Irinos-System.

o If moisture is present, wait until the Irinos-System has completely dried

(approximately 8 hours).

23

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Attention

Environmental conditions and chemical resistance

Environments, which are not appropriate for the Irinos-System, may lead to

malfunction. Chemical substances (e.g. cleaning agent) can change the

colour, form or structure of the device.

The Irinos-components may be damaged. This may result in malfunction.

Please note:

o Only use the Irinos-System in closed rooms.

o Only use the Irinos-System according to the environmental conditions

given in the specifications.

o Protect the Irinos-System against dust, moisture and heat.

o Do not place the Irinos-System into direct sunlight or other strong sources

of light.

o Without additional actions, the Irinos-System must not be used in

surroundings where caustic vapours or gases are used.

o Only use appropriate cleaning agents.

Any and all warranty or liability claims are excluded if these regulations are

violated.

Inappropriate cleaning agents may damage the device.

Only use washing-up liquid for cleaning. Do not use:

o Aggressive solvents and abrasive cleaner

o Steam jet

o Compressed air

o Vacuum cleaner

24

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Caution

Unexpected / unintended reaction while cleaning the Irinos-

System

If the Irinos-System is in operation while cleaning, this may result

in unintended actions. This may lead to personal injury or damage

at machinery.

Always turn off the Irinos-System before cleaning.

2.2 System Overview

As part of an industrial measurement system, the Irinos-System covers all

functionality, which is time-critical and hardware dependant.

It allows for an easy connection of various probe and sensor types, e.g.

inductive probes. Via a directly attachable foot-switches or push-button and

via digital I/Os, control functions can be integrated.

The measurement values and the I/O data is exchanged via Standard-

Ethernet to the PC, where it is processed in a measurement software:

25

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

For time-critical applications, measurement data can be sampled

synchronously in realtime. The measurement values are sampled and

buffered simultaneously by the Irinos-System. The Irinos-System sorts them

similar to a table and transfers them to the PC.

This real-time sampling is independent of the time-response of the PC! As an

example, roundness and form measurements can even be done using a

standard laptop without special hardware or realtime extensions. Integration

on the PC side is done via a Windows DLL with a simple but powerful API.

Measurement hardware, software and PC are available from Messtechnik

Sachs as a complete system. However, due to the open concept, the Irinos

can also be used with measurement software and PCs from other

manufacturers. Alternatively the DLL can be integrated into your own

measurement software.

2.2.1 Modularity

Due to its flexible design, the Irinos-System can be used for a wide range of

measurement applications.

An Irinos system consists of a minimum of 1 und up to 8 Irinos-Boxes. Each

Irinos-Box has a fixed number of measurement inputs (e.g. 2, 4 or 8). The

56

26

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Irinos boxes are connected in line topology via the EC-Link interface, i.e.

there is always a EC-Link cable between two Irinos boxes.

If 2 boxes are placed directly next to each other, the EC-Link cable can be

placed on the inside, i.e. it is invisible. Longer distances can be bridged by

external cables, whereby the total distance between the first and the last

Irinos box can be 10m.

The EC-Link interface combines three tasks in one:

a) Data exchange between the Irinos Boxes.

b) Time-Synchronisation of all measurement channels.

c) Forwarding the power supply to all Irinos-Boxes.

Irinos-Boxes with different types of measurement inputs can be combined

without restrictions.

27

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

For the PC respectively the measurement software, the number of Irinos-

Boxes is irrelevant. It always "sees" one Irinos-System, whose number of

measurement channels is determined by the Irinos-Boxes available.

The measurement values are transferred automatically between the Irinos-

Boxes via the EC-Link interface. Via Ethernet they are transferred as a

coherent block to the PC.

In addition, each Irinos-Box has a "qLink"-Interface, which allows for

connecting simple extensions. One example is the direct connection of a

foot-switch or push-button.

2.2.2 Syncronization & Speed

The simplest form of measurement is the so-called static measurement, in

which the measured values of all measurement channels are updated

asynchronously with an update rate of approx. 30 Hz. It is always active and

requires no parameterization. This is completely sufficient for numerous

measurement tasks.

In addition to static measurement, the Irinos system also offers the possibility

of fast real-time measurement sampling up to 4000 measured values/s. All

measuring channels connected via the EC-Link interface can be included at

full speed. In addition, all digital inputs and outputs can be included.

The real-time measurement requires the connection of the Irinos

system to the measurement software via the NmxDLL .

All Irinos boxes on the EC-Link interface have the same system time called

"EC-Link-time" (unit: µs). Technical deviations of the individual Irinos boxes

from the EC-Link time are continuously corrected. This does not have to be

parameterized or controlled by the user. In practice, the deviations are in the

range of a few microseconds (µs).

The measured value sampling is triggered simultaneously for all Irinos boxes

based on the EC-Link-time. The measured values are then temporarily stored

in the internal buffer of the Irinos box and then merged with the other

measured values by the master box. This allows the measured values of all

channels to be recorded simultaneously at very high speed.

For a time-limited real-time measurement, the following applies: The real-

time capability is independent of the number of probes, since each Irinos box

has its own measurement value buffer. For example, all measurement

channels can be samples simultaneously with a sampling rate of 4000

58

28

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

measurement values/s. The memory is dimensioned so that the measured

values can be recorded for at least 10 seconds at the maximum sampling

rate. If the sampling rate is lower, this time increases accordingly.

Only the transmission time to the PC depends on the number of channels and

the measuring rate. Depending on the data type of the connected probes,

between 80.000 and 200.000 measured values/s can be transmitted as a

rough guide value.

For an endless real-time measurement, the following applies: The

maximum sampling rate depends on the number of channels. The following

maximum sampling rates are recommended:

Recommended maximum sample

rate

(for endless measurement)

Number of measurement channels

4000 1-16

2000 17-32

1000 33-64

2.2.3 Master vs. Slave

Each Irinos system has exactly one master box. This is the Irinos box that is

connected to the PC via Ethernet. All other (optional) Irinos boxes are called

slave boxes.

After power on, each Irinos box first acts as a slave box. It then checks

whether a network cable is connected (i.e. Ethernet link active). If this is the

case, it automatically becomes the master box and communicates this to the

other boxes.

The use of several Ethernet connections in one system is not permitted.

Information for users who already know the "Irinos IR" system:

The "Irinos EC" system differs in this respect from the classic "Irinos

IR" system, where each box is either a master or slave box when

delivered.

29

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

2.2.4 Power Supply

It is imperative that you observe the safety instructions with regard

to the electrical voltage! It is particularly important to ensure that a

power supply unit with functional extra-low voltage (PELV) is used.

All Irinos boxes are supplied via a common 24 V voltage. This can be

supplied at any point in the system at a socket or terminal provided for

this purpose. It is distributed over the entire system via the EC-Link- and

qLink- cables.

An exception are the digital inputs/outputs, which must be fed in separately

depending on the box type. This also makes it possible to include the digital

inputs/outputs in an emergency stop circuit without completely switching off

the Irinos system.

The voltages required for measurement and communication are generated

internally via galvanically isolated DC/DC converters and, if necessary,

downstream linear regulators. This means that the internal voltages of several

Irinos boxes are completely separated from each other. This increases the

interference immunity. This is a prerequisite for precise measurement results.

In addition, the formation of ground loops is prevented.

Please note, however, that a stable and low-noise 24 V supply is a

prerequisite for proper operation of the Irinos system. Therefore use a

separate power supply unit with functional extra-low voltage (PELV) for the

Irinos system.

2.3 Product Descriptions

The product descriptions give an overview of the individual Irinos boxes as

well as various accessories. The pin assignment and technical details of the

individual connections can be found in the chapter Pin Assignments .

Available measurement boxes (cascadable via EC-Link - Interface)

Order Number Name

Number of

measurement

channels or

in-/outputs

Short

description

19

43

37

30

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

828-6050
EC-TFV -8-TESA-

M16-EPI
8

Measurement

box for inductive

probes type

TESA

HalfBridge or

compatible ones
828-6051

EC-TFV -4-TESA-

M16-EPI
4

Accessories EC-Link cables

Order Number Length Short description

828-6200
ca. 0.15m for invisible

cabling inside

EC-Link cable for

cascading multiple

Irinos-Boxes via the EC-

Link interface

828-6201 0.5m

828-6202 1.5m

828-6203 3m

Accessories desktop power supply

Order Number Included mains cable Power

828-6130
For EU: Schuko

connector, Type F

Input: 115/230V,

50/60Hz

Output: 24V DC, max.

60W

828-6131
For USA/Mexico: NEMA

5 connector, Type B

828-6132
For India: Connector

BS546, Type D

35

35

25

https://en.wikipedia.org/wiki/Mains_electricity_by_country

31

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

828-6133

For Switzerland:

Connector SEV1011,

Type J

828-6134
For UK: Connector

BS1363, Type G

Accessories for mounting

Order Number Name Short description

828-6150 EC-MHRM-1

Adapter for mounting

an Irinos EC - Box on a

DIN-Rail / H-Rail / Hat-

Rail

Accessories network cables

Order Number Length Short description

828-6181 2m

Irinos EC network cable,

2 x RJ45

828-6182 5m

828-6183 10m

828-6184 15m

2.3.1 Basic Composition Irinos-EC - Box with EC-Link Interface

An Irinos-EC - box with EC-Link - interface consists of 2 parts, the base box

and the measuring module:

32

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Base Box / EC-Link

The base box is identical for all Irinos EC boxes with EC-Link interface. It does

not contain any active electronics.

A special feature of the housing concept is that all connections are internal

(except measurement inputs and digital inputs/outputs). This has several

advantages:

· Optically appealing, as the connectors are not visible from the outside.

· Use of inexpensive standard cables possible, no industrial connectors

required. The required dust/fluid protection is nevertheless achieved by

suitable cable grommets.

· Compact yet very flexible system design possible.

· Quick exchange of the measuring module possible.

33

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

On the bottom side there are 2 holes for screws M4. This allows the basic box

to be fastened directly. Alternatively, the optional DIN rail adapter can also

be attached here.

The base box contains connectors for:

· X10 / X11: Power supply 24V DC (Input)

· X12: Ethernet-Interface for the connection to the PC

· X21 / X22: EC-Link - Interface for cascading multiple Irinos Boxes

· X23: qLink - Interface for expanding the Box with simple extensions (e.g.

foot switch)

The PCB with the connectors may move slightly. This is

intended!

29

34

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Measuring module
The measuring module is mounted in the basic box and contains the external

connections for the actual measuring or control function, such as the

connections for inductive probes. It contains the complete electronics.

Each measuring module has at least 2 LEDs at the front, one for the box

status and one for the Ethernet connection.

LED "Stat" / green: Box Status

Flashing: lange on, short off Everything ok

Fast flashing

An error has occurred. The
error type can be read out for
example with the ITool or via
the DLL interface .

LED "Eth" / blue: Network Status

Off
There is no network connection.
This is the normal case for slave
boxes .

On

A network connection has been
established, but no data is
transferred. This is the normal
case if the physical connection to
the PC has been established but
no measurement software has
been started.

63

51

56

28

35

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Flashing

A network connection exists and
data is transferred. This is the
normal case if the connection
between the measurement
software and the Irinos system
has been established.

2.3.2 EC-TFV for inductive probes

The measuring box EC-TFV is suitable for the connection of inductive probes.

The supported probe type can be found on the type plate.

The connections for the inductive probes are located on the front of the

measuring box.

In addition to the Standard LEDs , this Box has a "Probe"-LED:

LED "Probe" / red: Signalling a probe error

Off
Everything ok or no error
recognizable.

34

36

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

On Short circuit of the probe supply.

Data acquisition

All measuring inputs are sampled synchronously (no multiplexing). The

measurement method takes the complete measurement signal into account

(i.e. integrating measurement). Compared to the frequently used 1-point or

2-point sampling, this method has the advantage that its sensitivity to

interference is much better. The analog filter used in this measuring method

is designed for the mechanical properties of the respective probe.

For technical reasons, different input channels never have exactly the same

measured value with an identical input signal. In order to enable a trouble-

free change of the input channel or an exchange of the Irinos box, the

measuring inputs are digitally pre-calibrated at the factory. The adjustment is

made in such a way that the measured value -32,000 is supplied for the

maximum negative nominal deflection, the measured value 0 for the middle

of the probe and +32,000 for the maximum positive nominal deflection.

The internal data type is "16 Bit signed integer".

Digital
value

Probe deflection Tesa
HalfBridge GT21

Sensitivity:
73.75mV/V/µm

Probe deflection Tesa
HalfBridge GT61

Sensitivity:
29.5mV/V/µm

- 32,000 - 2000 µm - 5000 µm

0 0 µm 0 µm

+32,000 + 2000 µm + 5000 µm

+32,767 Probe error detected

37

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

2.4 Pin assignments

Attention

Always use ready-made cables to ensure proper operation. Otherwise, there

is a risk that components of the Irinos system or associated components

may be damaged.

This does not apply to terminal connections, e.g. for power supply with 24V

DC via connector X10 .

2.4.1 Power supply 24V

It is imperative that you observe the safety instructions with regard

to the electrical voltage! It is particularly important to ensure that a

power supply unit with functional extra-low voltage (PELV) is used.

Alternative 1 via Connector X10 (Terminal Block):

Before connection, provide the cable cores with ferrules with collars. The

maximum conductor cross-section is 1.5mm² / AWG16.

A shielded cable is required to ensure trouble-free operation even under

extremely unfavourable ambient conditions with complex cabling conditions.

Connect the cable shield on the Irinos box side to the FE bolt on the base

plate. This is marked accordingly inside the base box.

31

19

31

38

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Alternative 2 via Connector X11 (Power Supply

Connector):

The connection is made via a 2.5mm jack plug, which is de facto standard for

PELV-based desktop power supplies. GND is external, 24V is internal.

2.4.2 Ethernet

The Ethernet connection is established via a standard patch cable with RJ45

connector according to EIA/TIA 568B. Always use a shielded cable according

to Cat-6 or better.

The Ethernet interface of the Irinos system has crossover detection. Therefore

it does not matter whether a standard Ethernet cable or a crossover cable is

used.

The data rate is 100 MBit/s.

33

39

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Pin Name Description

1 TX+ Transmission Data+

2 TX- Transmission Data-

3 RX+ Receive Data+

4 unused

5 unused

6 RX- Receive Data-

7 unused

8 unused

2.5 Assembly

è It is essential that you read the safety instructions before system

assembly!

2.5.1 Checking the delivery

Checking the delivery
· When you receive the delivery, check the packaging for visible transport

damage.

· If there is damage in transit, complain the delivery to the responsible

carrier. Have the carrier confirm the transport damage immediately.

· Unpack the Irinos components at their destination.

· Keep the original packaging for future transport.

· Check the contents of the packaging and your specially ordered accessories

for completeness and damage. If the contents of the packaging are

19

40

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

incomplete or damaged or do not correspond to your order, inform the

supplier immediately.

· Also keep the supplied documents. They are part of the Irinos system.

Scope of delivery: Irinos-Box
· 1 Base box with connectors

· 1 Measuring- or I/O-module

· 5 Blind cable grommets to cover openings in the housing that are not

required

· 1 cable grommet for power supply

· 1 Cable grommet for a commercially available network cable

· 2 plastic washers for mounting

· Safety instructions leaflet

· Warning note DHCP-Server

Scope of delivery: accessories

Item Scope of delivery

Desktop power supply

· Power Supply

· Mains cable

Ethernet cable · Ethernet cable

EC-MHRM-1 DIN-Rail Adapter

· DIN-Rail Adapter

· 2 matching Allen screws M4x6 for

fixing the adapter to the Irinos box

EC-Link - connection cable
Connecting cable with matching

cable grommets

qLink - connection cable
Connecting cable with matching

cable grommets

41

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

2.5.2 Mounting location

As field devices, the Irinos boxes are suitable for use in closed enclosures, e.g.

in switch cabinets, and for placement on or near the measuring device.

Especially in the case of larger systems, placement close to the measuring

device is preferable. It offers two important advantages:

o The cables of the measuring probes, incremental encoders and other

sensors can be very short. The quality of the analog signals at the

measuring input is therefore particularly good. In addition, this simplifies

cable routing far from possible sources of interference.

o Replacing a probe, e.g. in case of a defect, is easier.

For trouble-free operation of the Irinos system, take this into account:

Always place the Irinos boxes away from possible sources of

interference, such as converters or motor cables.

Protection against dust and water is an important factor when choosing a

suitable location. The Irinos boxes are designed in such a way that they are

impermeable to the usual soiling. In order to comply with this, however,

suitable connectors for the connected cables are required. However, most of

the standard probes and incremental encoders on the market have

connectors with a low degree of protection. These connectors would have to

be replaced in order to achieve the degree of protection.

It is therefore advisable to place the Irinos boxes in such a way that little

protection is sufficient or no protection at all is required.

The Irinos boxes have a low inherent heat development and are designed for

industrial ambient temperatures. In addition, the integrated measuring

electronics are particularly temperature-stable.

Nevertheless, choose a location with moderate ambient temperatures. The

permissible temperature range is specified in the respective data sheet. In

particular, avoid placing the device near heat sources such as heat sinks of

other devices or heating elements.

2.5.3 Mounting

Irinos boxes can be mounted in 2 different ways:

42

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

1. By means of 2 M4 screws, e.g. on a sheet metal plate or on an aluminium

profile (Item or similar).

2. Using the EC-MHRM-1 DIN rail adapter on a DIN rail (also known as H

rail).

In any case, a very fast exchange of an Irinos box is possible.

Mounting with 2 screws M4
In the bottom of the base box there are 2 holes for screws M4. These are

closed with rubber plugs when delivered.

For the attachment are needed:

· 2 screws M4

· 2 plastic washers M4 (included in scope of delivery)

· Suitable screwdriver

The procedure is described in the following tutorial:

Direct Mounting

Mounting vai DIN rail adapter EC-MHRM-1
The DIN rail adapter is fastened to the bottom of the base box with 2

screws. In the bottom there are 2 holes for screws M4. These are closed with

rubber plugs in the delivery condition.

For the attachment are needed:

· DIN rail adapter EC-MHRM-1

31

31

43

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

· 2 screws M4x6 (delivered with DIN rail adapter)

· 2 plastic washers M4 (delivered with base box)

· Allen key, size 2.5

The procedure is described in the following tutorial:

DIN rail mounting

2.5.4 Wiring

Proper cabling is essential for trouble-free operation of the Irinos

system. Please observe the following rules:

o Place all cables spatially separated from possible sources of

interference, such as inverters or motor cables.

o Avoid unnecessarily long cables. Avoid "cable loops" in particular.

o All measurement cables and the EC-Link- and qLink-cables must

be shielded.

o Use the locking mechanisms of the connectors.

o Avoid mechanical stress that can affect the cables.

When used in drag chains, ensure that suitable cables are used.

Provide all unused external connectors with a protective cap.

The PCB with the connectors in the base box may move

slightly. This is intended!

31

44

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

First mount the Irinos boxes. Then connect the cables in the following order:

1. If more than 1 Irinos Box is used: Connect EC-Link - cables.

2. If extensions are used, which are connected via qLink: Connect qLink

cables.

3. Connect Ethernet cable to the Master Box.

4. Connect power supply.

2.5.4.1 EC-Link Wiring

EC-Link - wiring is only required when 2 or more Irinos boxes are

used.

Basics

o The EC-Link interface is a bus system in line topology. Each Irinos box has 2

EC-Link connectors .

o Two Irinos boxes are always connected to each other via a EC-Link line.

One EC-Link connector remains unused at the first and the last Irinos Box.

o Manual termination is not required. The Irinos system automatically

activates the required termination resistors, when it is switched on.

o The maximum permissible total length of the EC-Link> cabling is 10m.

o An Irinos system may consist of a maximum of 8 Irinos boxes (including

master box).

Procedure

The procedure is described in the following tutorial:

44

45

46

31

45

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

EC-Link Wiring

2.5.4.2 Connecting Ethernet

In a system with several Irinos boxes, the Ethernet connection may

only be established on one box. This is then referred to as the

Master-Box .

The Ethernet interface of the Irinos system is a standard Ethernet interface,

which is also used, for example, for IT networking. The Irinos system can

therefore also be used with standard Ethernet switches.

Data communication between the Irinos system and the PC is fault-tolerant,

so that if a packet is lost, a transmission repeat is automatically performed.

However, this repetition always leads to a significant delay in the availability

of the measured values. A transmission repetition should therefore be an

exception in practice.

In order to minimize the number of transmission repetitions, a direct

connection between the Irinos system and the PC is strongly

recommended. To do this, connect the Ethernet interface of the Irinos system

to a free Ethernet interface of the PC. Experience shows that transmission

repetitions practically never occur.

Operation of the Irinos system via router, VPN connections, wireless

connections (WLAN) or similar is not intended.

The Ethernet interface of the Irinos system has an automatic "cross-over

detection". It does not matter whether a 1:1 Ethernet cable or a crossed

Ethernet cable is used.

28

46

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

The DHCP server of the Irinos system is activated on delivery. This is

the ideal setting for a direct connection to the PC.

Before the Irinos Box is operated in an IT network, the DHCP server

must be deactivated via a direct connection. This is done via the

Irinos tool. Please refer to the Irinos Tool documentation for

more information.

Procedure

The procedure for the Ethernet cabling is described in the following tutorial:

Connecting Ethernet

2.5.4.3 Connecting the power supply

It is imperative that you observe the safety instructions with regard

to the electrical voltage! It is particularly important to ensure that a

power supply unit with functional extra-low voltage (PELV) is used.

Observe the general notes on power supply .

A 24V DC power supply is required.

This can either be done via a 2.5mm DC plug connector (-> desktop power

supply), or via terminals.

Procedure / Desktop Power Supply / Connector X11

The procedure for connecting the power supply via a desktop power supply

unit is described in the following tutorial:

51

19

29

47

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Connecting the power supply

Procedure / Terminals X10

If, for example, a switch cabinet power supply is used instead of a desktop

power supply, the 24V connection can also be made via the green terminals

(X10). The terminal assignment is shown in the sticker inside the Irinos box:

Always use ferrules with collars for the cable cores. The terminals are

designed for conductor cross-sections from 0.25mm² to 1.5mm² (AWG 24 to

AWG 14).

A shielded cable must be used and connected to the functional earth bolt in

order to guarantee optimum EMC immunity in accordance with the

requirements of the CE marking even under extremely unfavourable

environmental conditions. The bolt is available at the bottom of the housing

(M3 thread).

48

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

2.5.5 Insert Measuring Modules

Attention

Damage due to improper installation

When installing the measuring module, make sure that it does not jam.

Make sure that all cables are connected in such a way that there is sufficient

space for the measuring module. Make sure in particular that the plug

connector of the measuring module can be plugged onto the connector

board.

Procedure

The procedure for installing the measuring module (front unit) is described in

the following tutorial:

Inserting the Measurement Module

2.6 Setup & First Steps

The Irinos system is designed so that no configuration of the system or

components is required. The only exception to this is the network settings (IP

address), which can be reconfigured via the ITool .

Once the mounting and wiring is complete, the Irinos system can be

turned on immediately by supplying power to the power supply.

51

39

49

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

2.6.1 Box addressing

All Irinos boxes are automatically addressed after switching on. The master

box always has the address 0. The slave boxes are numbered consecutively in

the order in which they are connected. The box sequence is also decisive for

the initial numbering of the measurement inputs or the digital

inputs/outputs.

The following figure shows some examples of box addressing:

In order not to get a shift of the addressing in case of a system extension, it is

recommended to use the first or the last box as master box (examples 1 and

2).

The duration of the addressing process depends on the number of

connected boxes. Typically, it only takes a few seconds.

The first and last boxes are also determined during box addressing. Bus

termination is automatically activated for both boxes.

50

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

During setup, it should be checked after switching on whether all boxes are

correctly connected and thus correctly addressed. This can be done, for

example, via the webserver .

2.6.2 Network configuration

An Irinos box has an integrated DHCP server. It is enabled by factory default.

The IP address of the Irinos system is 192.168.3.99, the subnet mask

255.255.255.0. If the Ethernet interface of the PC is configured as a "DHCP

client", it is automatically assigned an IP address from the address range

192.168.3.100 to 192.168.3.254 when the connection is established. Then no

network configuration is necessary. Nevertheless it is recommended to assign

a fixed network address on the PC side (e.g. 192.168.3.98).

The DHCP server of the Irinos system is enabled on delivery. This is

the ideal setting for a direct connection to the PC.

Before the Irinos Box is operated in an IT network, the DHCP server

must be deactivated via a direct connection. This is done via the

Irinos Tool . Please refer to the Irinos tool documentation for

more information.

If the use of the DHCP function is not desired, there are 2 possibilities:

a) The DHCP server on the master box remains enabled. However, the PC has

a fixed IP configuration. To do this, use the following network settings on

the PC, for example:

IP address: 192.168.3.98

Subnet mask: 255.255.255.0

b) The DHCP server on the master box is deactivated via the Irinos tool. The

IP address of the Irinos Box can be freely assigned. The PC receives a fixed

IP configuration.

Please refer to the documentation of the Irinos Tool for the exact

procedure.

The easiest way to test whether the network connection works is via the

webserver of the Irinos system. Open a web browser and enter the IP

address of the Irinos system in the address bar. If the network connection is

working, the web page with the measured value display will now appear.

Under "First aid: Network connection " the typical procedure for

connection problems is described.

52

51

51

52

73

51

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

2.6.3 Irinos-Tool

The Irinos tool is a configuration and test tool for the Irinos system. Its

features include:

o Change the network configuration of the Irinos system.

o Overview of the available measurement channels.

o Diagnosis of the incremental encoder signals (1Vpp).

o Display of static measurement values.

o Overview of the Irinos boxes connected to an Irinos system.

o Perform firmware updates.

o Readout and storage of the diagnostic memory contents.

For more information, refer to the Irinos tool documentation available

separately.

It is recommended to keep the Irinos-Tool available on the measuring

computer connected to the Irinos system, so that it can be used quickly as an

aid in case of diagnosis. There are no license fees for the Irinos tool as long

as it is used exclusively in connection with the Irinos system.

52

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

2.6.4 Web-Server

The Irinos system has an integrated web server that serves as a setup and

diagnostic tool. The web server is accessed from a web browser such as

Internet Explorer, Firefox, Chrome or Opera. Enter the IP address of the Irinos

system in the address line of the web browser (default 192.168.3.99).

The presentation of the web pages was successfully tested with the

web browsers InternetExplorer 11, Firefox and Chrome. Due to the

different interpretation of standards, a flawless function cannot be

guaranteed with all browsers and browser versions.

There are 3 different websites available:

Measurement (current measurement values)
On the "Measurement" web page, the current measured values of the

measurement inputs and the current status of the digital inputs/outputs are

displayed live (update rate approx. 4 Hz).

This allows:

o The measurement probes can be adjusted and testes without the

availability of the measurement software.

o The measurement values shown on the webserver can be compared to

those, which are shown by the measurement software.

Please note for inductive probes: The displayed unit is valid for standard

probes. For probes with longer travel (e.g. ±5mm) and different sensitivity, a

manual conversion is required.

53

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Inventory (Box-Overview)
The website "Inventory" displays an overview of all Irinos boxes available in

the Irinos system with the most important box information:

54

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Information Example Description

Serial I018023
Serial number of the

Irinos-Box

Device
EC-TFV-8-TESA-M16-

EPI

Description of the

Irinos-Box

MAC Address A0-BB-3E-E0-06-2C
Unique MAC address of

the Irinos-Box

Order Number 828-6050
Order number. It always

begins with 8.

Firmware Version V2.0.0.18 Firmware version

Hardware Version V1.2 Hardware version

Hardware Revision 1

Hardware compatibility

code for firmware

update

Sample Period 250 µs
Internal sampling

period in µs

Channels 8 channels (16-bit)

Number of

measurement channels

and their internal data

type

Digital Inputs 16
Number of digital input

bits

Digital Outputs 16
Number of digital

output bits

Diagnostic (Diagnostic memory)
The Diagnostic web page displays the contents of the diagnostic memory of

the individual Irinos boxes:

55

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

56

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Column Example Explanation

Diagnostic-Id Sine-oscillator (15)
Type of diagnostic

event .

System Time 8935067150

Link-Zeit in µs since

power-on of the Irinos-

Systems. (This internal

time is identical for all

Irinos Boxes)

Abs. Time
2019-07-22

12:21:05:994

Date and time when the

event occurred.

Year-Month-Day

Hour:Minute:Second:Milli

second

Module 0x2000
Additional Information

for support requests.
Line 570

Event

Probe short circuit. To

identify the defective

probe, remove each

probe until this error is

gone.

Help text for the event.

Firmware-Version V2.0.0.18
Firmware version with

which the event occurred.

2.7 Software Interface

The Irinos EC - System offers 3 different possibilities for integration into the

measuring software, whereby the NmxDLL is the preferred one:

NmxDLL ASCII / Telnet MscDLL

63

27

58 59 62

57

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Type

Windows based

DLL interface

(Win 7 / 8 / 10)

ASCII based

readout of

measurement

values via Telnet

of UDP

Windows based

DLL interface (Win

XP / Vista / 7 / 8 /

10)

Static

Measurement
Yes Yes Yes

Realtime

measurement
Yes No No

Exchange of

digital I/O data
Yes Yes Yes

Readout of

diagnostic

information

Yes No Yes

Parametrizatio

n of

measurement

channels

Yes No Yes

Supported by

other

measurement

systems

o Irinos IR, using

Firmware-

Version 2 or

greater

o Irinos IR, using

Firmware-

Version 2 or

greater

o Irinos IR

o Older systems

Note

Preferred

interface for

standard

applications

Quick

implementation

for simple

applications

Compatibility with

existing

integration of the

MscDLL into

measurement

software

(Attention:

dynamic

measurement

not supported!).

58

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

If you start the

DLL

implementation

from scratch, use

the NmxDLL.

The NmxDLL and the MscDLL are described in detail in a separate reference

manual. Consult the respective reference manual for detailed information.

Common to all software interfaces is that the software implementation is

independent of the number of measurement channels.

For example, for software implementation it does not matter whether a

system has 4 or 64 measurement channels. Only one connection to the Irinos

system needs to be established and managed at a time. Only the number of

available measuring channels depends on the number of channels.

2.7.1 NmxDLL Quick Overview

This is only a short overview!

Detailed information can be found in the reference manual of the

NmxDLL.

The NmxDLL is the link between the measuring software and the Irinos

system. It offers the following possibilities:

o Reading the measurement values from the Irinos system (static and/or in

real time).

o Read status information (e.g. current diagnostic event).

o Reading the state of the digital inputs / Setting the state of the digital

outputs

o Parameterization of the Irinos system

63

59

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

For small applications with a small range of functions, the use of a few

function calls of the NmxDLL is sufficient.

Others also enable the simple implementation of complex applications.

Various sample programs are available for integration into measurement

software.

2.7.2 ASCII- / Telnet-Interface

The Irinos EC offers an ASCII-based text interface for the simplest

applications. This is comparable to the widely used connection of

measurement hardware via RS232.

The ASCII interface can be accessed either via TCP-based Telnet or via UDP.

While the ASCII protocol itself is identical, the two options differ as follows:

Telnet / TCP UDP

60

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Port-Number TCP 22515 UDP 22515

Packet loss

Automatic repetition of

data transmission at

protocol level (TCP) in

the event of packet loss.

In case of packet loss at

UDP level, a manual

repetition of the data

exchange is required.

Latency

Theoretically very long

latency time possible.

With a 1:1 Ethernet

connection, however,

this is negligible in

practice.

Very short latency times

possible.

Max. Text-Length 16000 Characters/Bytes

1450 Characters/Bytes if

a 1:1-Ethernet

connections is used

The data is always exchanged in the question -> answer - procedure, i.e. the

measuring software sends a request to the Irinos system and it sends an

answer. Each request / answer consists of a kind of "header", the actual data

and an end identifier.

The header can be used to distinguish between different commands by

means of an identifier. The following data are optional depending on the

question/answer. The end identifier is terminated via "CarriageReturn (CR)"

and "LineFeed (LF)" and is represented in the following as {CRLF}. CR has the

ASCII code 0x0D and LF the ASCII code 0x0A.

Note: The Irinos system recognizes only CR or only LF as end, but always

sends both back in the response.

The protocol is explained using the following examples:

Command Request Response Notes

Dummy

command
?Nop1{CRLF} =Nop1#OK{CRLF}

Helpful for

testing

61

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

communication

as well as

"Heartbeat".

Read

measurement

values

?MVal1{CRLF} =MVal1#0;-3;-12189;2{CRLF}

Example for 4

measurement

channels. With

more

measurement

channels, the

response is

correspondingly

longer.

Read digital

inputs
?DIn1{CRLF} =DIn1#0;1;0;1;1;0;0;0;0;0;0;1;0;1;0;1{CRLF}

Example for 16

digital inputs.

Values can be 0

or 1.

Set digital

outputs
?DOutSet1#1;1;0;0;1;0;0;0;0;0;0;0;1;1;1;1{CRLF}=DOutSet1#1;1;0;0;1;0;0;0;0;0;0;0;1;1;1;1{CRLF}

In the response,

the actual state

of all digital

outputs is

returned. This can

also be more

than in the

request, if only a

part of the

outputs was set

here.

Values can be 0

or 1.

Read

measurement

values and digital

inputs together

?MValDIn1{CRLF} =MValDIn1#0;-3;-12189;2;0;1;0;1;1;0;0;0;0;0;0;1;0;1;0;1{CRLF}

Combination of

"MVal1" and

"DIn1". First come

the measured

values, then the

digital inputs.

62

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Tip:

For test purposes, data can also be exchanged via Telnet using

numerous terminal programs such as "RealTerm".

2.7.3 MscDLL Quick Overview

This is only a short overview!

Detailed information can be found in the reference manual of the

MscDLL.

63

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

The MscDLL has long been established on the market and is supported by

numerous providers of measurement software.

For compatibility with these software packages, the Irinos EC also supports

this interface in a limited form: everything is supported except dynamic

measurement. This means that the Irinos EC in combination with this

interface is only suitable for static measurements.

2.8 Troubleshooting & First Aid

The Irinos system has numerous internal monitoring mechanisms that can

support setup and servicing.

Depending on the configuration, a detected diagnostic event is stored in

the diagnostic memory and/or output via the software interface to the

PC software.

The factory configuration of the diagnostic events is designed in such a way

that no reconfiguration is required for typical applications.

2.8.1 Diagnostic events

Each Irinos box has a central event handler. As soon as a special event occurs

in the firmware, it is reported to the event handler. Depending on its

configuration, the event is

o signalled to the use/application,

o stored in the diagnostic memory .

No event should occur during normal operation.

In order to distinguish between the events, there are different event types

which are distinguished by the event number.

With the appropriate configuration, the occurrence of an event is indicated

via the status LED of the Irinos Box. The event can also be read out via the

software interface .

The Irinos system has a very detailed error handling strategy to ensure

reliable operation. Most events triggered by an error are hypothetical in

nature. These are therefore not documented. Contact support if such an event

occurs.

63

72 56

72

31

56

64

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

The following is a list of those events that are relevant to practice:

Event 1: „System“

Description Common system event

Type Information

Cause

o System has been started

o Diagnostic memory has been

cleared

Forwarding to user/application No, cannot be activated

Entry in diagnostic memory Yes, cannot be changed

Event 4: „MscDll communication error“

Description

A problem was detected in the

communication between the Irinos

system and the MscDll.

Type Error

Cause

o An invalid opcode has been used

(Event text in diagnostic memory:

„Invalid opcode in RX packet“)

-> Use only valid opcodes

o The send an receive buffer size if

too small (Event text in diagnostic

memory: „Too much TX data“)

-> Use the port number and buffers

sizes given in the reference manual

in the file Msc.cfg

Forwarding to user/application Yes, cannot be de-activated

72

65

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Entry in diagnostic memory Yes, can be changed

Event 12: „EC-Link module detection error“

Description

A problem with the recognition or

termination of the slave box(s)

occurred when starting the Irinos

system.

Type Error

Cause

o Invalid EC-Link-wiring or broken EC-

Link-cable

-> Check EC-Link wiring

o Multiple master boxes in one Irinos

system

-> Only one master-box is

allowed

o Irinos-Box broken

-> Replace the Irinos-Box

Forwarding to user/application

For Irinos systems with multiple slave

boxes:

Test the system first with 1, then with 2,

then with 3, and so on slave boxes to

find out where the problem occurs.

Entry in diagnostic memory Yes, can be de-activated

Eintragung in

Diagnose-Speicher
Yes, can be changed

Event 13: „EC-Link communication error“

44

28

66

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Description
Communication via the EC-Link

interface is faulty.

Type Error

Cause

o Invalid EC-Link-wiring or broken EC-

Link-cable

-> Check EC-Link wiring

o Improper power supply (e.g. short

voltage drops)

-> Use an appropriate power

supply .

Forwarding to user/application

The link communication has an

integrated data check as well as a

packet repetition in case of an error. If

the packet retry fails multiple times,

this event is triggered.

Entry in diagnostic memory Yes, can be de-activated

Eintragung in

Diagnose-Speicher
Yes, can be changed

Event 15: „Sine-oscillator“

Description

The sine oscillator for the inductive

probes has been overloaded (short

circuit).

Type Error

Cause

o Defect of a probe

-> Replace the probe

o Measuring probe incorrectly

connected, e.g. when using an

44

29

35

67

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

extension cable

-> Check wiring / pin assignment

Notes

It is checked cyclically whether the

oscillator short-circuit is still present.

As soon as it is no longer present, the

event is automatically deleted.

èTo find the cause, remove the

probes one after the other. Wait 10s

after removing a probe. As soon as

the event is no longer active

(indicated by the red error LED),

the defective probe has been

removed.

Forwarding to user/application Yes, can be de-activated

Entry in diagnostic memory Yes, can be changed

Event 24: „Inc. encoder power error“

Description

The power supply of one or more

incremental encoder channels was

switched off due to overload / short

circuit.

Type Error

Cause

o Defect of an incremental encoder

or an incremental encoder cable

-> Replace incremental encoder

o Incorrect connection of an

incremental encoder.

-> Check wiring / pin assignment

o Incremental encoder power

consumption too high

35

68

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

-> Observe permissible connected

loads.

Notes

o In the event of an overload / short

circuit at a single incremental

encoder input, only the input itself

is deactivated. All other inputs

remain functional. As soon as the

overload or short-circuit has been

removed, the event is automatically

deleted.

o In the event of a total overload, the

power supply for the incremental

encoder inputs is permanently

switched off. The incremental

encoder inputs can only be used

again after the Irinos system has

been restarted.

Forwarding to user/application Yes, can be de-activated

Entry in diagnostic memory Yes, can be changed

Event 25: „Inc. encoder application error“

Description

The input signals of an incremental

encoder input were / are outside the

permissible range.

Type Error

Cause

o Incremental encoder connector has

been removed during operation.

o Incremental encoder connector not

fitted properly (loose contact).

-> Use connector screws for proper

fixation.

69

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

o Input frequency of the

incremental encoder too high

-> Reduce speed of incremental

encoder / avoid mechanical shock

o Incremental encoder cable too long

-> Use short cable

o Improper wiring of the incremental

encoder

-> Check pin assignment

o Encoder signals out of specification

-> Check signals with Irinos Tool

Notes

o The incremental encoder signals can

be checked with the Irinos Tool

(only 1Vpp).

o See application notes for

incremental encoders .

o The incremental input channel can

be reset via the software interface

(see reference manual for detailed

information).

Using NmxDLL:

NMX_ChannelSetParameter

Using MscDLL: Opcode opcSP

Forwarding to user/application Yes, can be de-activated

Entry in diagnostic memory Yes, can be changed

Event 27: „Firmware update error“

Description
An error occurred during the

execution of the firmware update.

78

51

51

77

56

70

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Type Error

Cause

o Invalid firmware file

-> Use valid firmware file

o Transmission error

-> Repeat the firmware update

Notes
After a failed firmware update, the

"old" firmware version is still active.

Forwarding to user/application Yes, can be de-activated

Entry in diagnostic memory Yes, can be changed

Event 28: „Firmware update successful“

Description
A firmware update was successfully

performed.

Type Information

Forwarding to user/application No, cannot be activated

Entry in diagnostic memory Yes, cannot be changed

Event 36: „Digital I/O error“

Description

The output driver for the digital

outputs was overloaded (thermal

overload).

Type Error

71

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Cause

o Too high continuous load of the

digital outputs.

-> Adapt maximum output load to

specification.

Notes

As soon as the output driver has

cooled down, the outputs are

automatically enabled again and the

event is deleted.

Forwarding to user/application Yes, can be de-activated

Entry in diagnostic memory Yes, can be changed

Event 43: "NMX sampling configuration invalid"

Description
The configuration of the real-time

sampling is invalid.

Type Error

Cause o Invalid sampling period

Notes

Forwarding to user/application Yes, can be de-activated

Entry in diagnostic memory Yes, can be changed

Event 44: "NMX sampling error"

Description
Error during execution of real-time

sampling.

Type Error

72

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Cause

o Internal buffer overflow /

measurement values have not been

readout in-time.

o Communication error between

multiple boxes (e.g. cable broken).

Notes

Forwarding to user/application Yes, can be de-activated

Entry in diagnostic memory Yes, can be changed

2.8.2 Diagnostic Memory

Each Irinos box has an integrated, non-volatile diagnostic memory in which

the events that have occurred are stored (provided that saving is activated

for the respective event). It can be read out via the webserver as well as

via the Irinos-Tool .

The diagnostic memory is therefore an important tool for tracing occurring

problems and limiting their causes. This is especially true if an error occurs

sporadically.

At least 32 entries per Irinos box can be stored in the diagnostic memory. As

soon as it is full, the oldest entries are automatically deleted, creating space

for new entries.

In addition to the actual diagnosis event, a diagnosis entry contains some

additional information that can help you find the cause. These include the

system time (EC-Link time) and the absolute time.

The EC-Link time corresponds to the time in µs since the Irinos system was

started. It is uniform on all Irinos boxes of a system.

The absolute time contains the date and time of the diagnostic entry. Since

the Irinos system does not contain a real-time clock, the absolute time is

always 0 when the system is started. It should then be written from the PC.

This is done via the software interface . Each subsequent diagnostic entry is

then provided with the absolute time.

52

51

27

56

73

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

After switching on, the diagnostic entry "System (1)" with the help text

"System started" is stored in each Irinos box. This makes it possible to see

whether an event occurred before or after the Irinos system was last switched

on.

2.8.3 First Aid "Network Connection"

è This chapter provides help for typical network connection problems. More

information is available in the users manual of the Irinos-Tool .

Usually one or more of the following reasons lead to connection problems:

o Network cabling is invalid.

o The network configuration of the PC differs from the network configuration

of the Irinos-System.

o The communication settings for the software interface are wrong.

Checking network cabling

a) Check, if the network interface of the Irinos-System is connected to the

network interface of the PC.

A working electrical connection is signalled by the "Ethernet LED ". This

LED must either be turned on or flashing.

Proceed with the next step, if this is the case.

Verifying the network configuration

b) Start the Irinos-Tool. It searches for all available Irinos-Systems in the

network and lists them in a table. Your Irinos-System should be listed in

this table. You can use the MAC address to verify this (the MAC address is

printed on the type-plate of the Master Irinos-Box).

The IP settings will also be displayed in this table.

c) Try to connect to the Irinos-System via the Irinos-Tool.

Proceed with the next step, if the connection cannot be established.

Otherwise proceed with step f).

d) Open the network configuration of the Irinos-System by douple-clicking in

the table row. The following window opens:

51

56

31

74

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

e) Open the Windows configuration settings of the network adapter, which is

connected to the Irinos-System. Open the settings for "internet protocol

version 4 (TCP/IPv4)".

In case the DHCP-Server of the Irinos-System is enabled, the option

"Optain an IP address automatically" must be enabled (see left figure

below).

In case the Irinos-System has a fixed IP address, the PC must also have a

fixed IP address. Both IP addresses must be within the same subnet. In

most cases the subnet mask 255.255.255.0 is used. In this case the first

three elements of the IP addresses must be the same. If the Irinos-System

for example has the IP address 192.168.178.1, the PC must have an IP

address of the range 192.168.178.2 to 192.168.178.254 (see right figure

below).

If necessary, change the Windows IP settings.

75

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Windows IP configuration

Adopting the communication settings for the measurement application

f) Check the IP address stored in the measurement software. This must match

the IP address of the Irinos system (factory setting 192.168.3.99).

g) Start the application. The connection should now be established.

2.8.4 Maintenance, Cleaning & Disposal

Maintenance
The Irinos system is designed for maintenance-free continuous operation.

It is recommended to check the fastening of the external plugs at regular

intervals, e.g. monthly. This will prevent wear-out of the connectors. In

addition, the possible occurrence of error sources is prevented as a

preventive measure.

76

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Cleaning

Caution

Unexpected / unintended reaction while cleaning the Irinos-

System

If the Irinos-System is in operation while cleaning, this may result

in unintended actions. This may lead to personal injury or damage

at machinery.

Always turn off the Irinos-System before cleaning.

For intensive use, carry out the cleaning operations listed in the following

table.

If the environment is particularly dirty, more frequent cleaning may be

necessary. In return, the cleaning intervals can be extended for occasional use

or in a clean environment.

Interval Cleaning procedure

3 Month Cleaning of the connector surface

from oil and dust.

Use a paper towel moistened with

detergent water for cleaning.

Do not turn on the Irinos system until

the connectors are completely dry.

Monthly Clean the cabinet with a paper towel

moistened with detergent water.

Use a scratch-free towel.

77

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Disposal

Dispose both the Irinos system and the accessories via the electronic scrap

recycling system of your respective country. Do not dispose it with household

waste.

2.9 Application Notes

Geben Sie hier den Text ein.

2.9.1 Incremental Encoders

Incremental encoders are reliable and precise measuring devices if potential

problems are encountered during the project planning phase of the

application. Therefore, please observe the following application notes:

o Referencing

o Input frequency

o Interpolation of 1Vpp signals

2.9.1.1 Referencing for absolute measurement

Incremental encoders are not absolute measuring devices. In order to obtain

absolute measured values, referencing is always necessary after switching on

and after a signal error. The Irinos-Box EC-INC offers the following

possibilities for referencing:

o Referencing via index

The counter value is set to 0, if the index signal is passed.

o Referencing via software:

The counter value can be set by software any time. It is possible to set the

value 0 as well as to any other value (in the valid value range).

77

78

78

78

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Both actions can be performed in conjunction with the NmxDLL and

MscDll :

o NmxDLL: NMX_ChannelSetParameter

o MscDLL: Opcode opcSP (0x35)

Please note that the Irinos Box EC-INC can only offer the technical possibility

for referencing. The procedure for referencing the measured value depends

on the respective measuring procedure. This must therefore already be

considered in the planning phase. In particular, consider the procedure after

the occurrence of an incremental encoder error.

2.9.1.2 Input frequency

The input frequency of the incremental signals (TTL / RS422) or the signal

period (1 Vpp) is limited. Details can be found in the specifications for the

respective Irinos-Box.

In most measurement applications the theoretical input frequency is far

below the limits. However, in reality it can be exceeded quickly through jerky

movements. Examples are:

o “Cutting loose” at the beginning of a movement (crossing static friction)

o Mechanical stroke

o Jerky movement due to mechanical tensions

It is recommended to take this into account during the planning phase. If a

jerky movement cannot be avoided, this must be considered in the

measurement process (e.g. by referencing while moving).

2.9.1.3 Interpolation (only 1Vpp)

An incremental encoder with 1 Vpp - Interface provides two sine waves, each

as a differential output signal. The phase shift between these is 90°. One

signal period (i.e. 360°) relates to one incremental division of the encoder.

The Irinos-Box EC-INC separates a division into 200 incremental steps via

analogue interpolation. Thereby the usable resolution of the encoder

increases by 200.

Example: An incremental encoder has a resolution of 1.800

divisions/revolution. Via the interpolation, this results in

1.800 divisions/revolution * 200 increments/division = 360.000

increments/revolution.

58

62

79

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

1Vpp signal period

The accuracy and reliability of the interpolations depends on the quality of

the differential sine signals. An ideal signal has the following characteristics:

o The differential voltage is 1 Vpp.

o The signal offset is 0, i.e. at 0° the signal always provides the same value.

o The phase shift between both sine signals is exactly 90°.

In reality, such a signal is rarely available. Because of this, the Irinos-Box EC-

INC has an integrated gain- and offset control (patent applies). It corrects

these deviations within the allowed value range (see limiting values in the

specification section of the datasheet).

Below or above the threshold values, a reliable interpolation is not possible.

An integrated signal examination detects such errors. The error status can be

read by software in parallel to the measurement. In case of an error, the

counter channel should be reset. The referencing procedure should be

redone.

Signal quality

The signal quality depends on various factors. Important ones are:

o Speed of the incremental encoder

The higher the speed of the incremental encoder, the smaller the actual

differential voltage. Some incremental encoders have a very good signal

quality while standing still or at low speed. As soon as they are moved /

turned, the signal quality decreases rapidly.

80

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

o Mechanical stability of the incremental encoder and the mechanics

An incremental encoder or a measurement device, which does not move

smoothly, leads to variations in the measurement signal.

o Adjustment of the incremental encoder

Some incremental encoders (e.g. glass scales) need to be adjusted. An

improper adjustment can lead to an insufficient sensor signal (especially

for dynamic movements).

o Cable length and cable quality

The longer the cable, the worse the signal quality.

The more connectors are used, the worse the signal quality.

A cable with insufficient shielding or wrong line impedance deteriorates

the signal quality.

Often the reason for a signal problem is a combination of these factors.

Suggestions

o Please observe the cut-off frequency of the incremental encoder. It can be

found in the encoder datasheet.

Attention: The cut-off frequency depends on the cable length.

o Check the signal quality during system setup. The signal levels should have

enough margin to the limits.

The Irinos-Tool provides a live-view of the signal levels.

o Make sure that no strong jerk can disturb the signal quality.

o Be prepared to enhance the measurement procedure by the functionalities

"reset encoder error" and "restart referencing".

o Use short cables with sufficient shielding (this also applies to the

connectors). Avoid extension cables. The Irinos-System allows placing the

Irinos-Box next to the incremental encoder.

81

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

o Keep distance between the incremental encoder cable and possible

sources of noise, like for example frequency changers or motor cables.

2.9.2 Power consumption

The power consumption of an Irinos system depends on the number of Irinos

boxes connected and the number of consumers connected. Connected loads

are for example measuring probes and sensors.

An overview for estimating the total power consumption can be found in the

following table. Please note that all values are guide values. The actual

power consumption may differ. Please refer to the respective data sheets for

exact details on power consumption.

Irinos-Box

Typical power

consumption without

probes, sensors, etc.

Recommended

calculation value with

connected loads

EC-TFV < 2 W ca. 2 W

It is recommended to check the actual power requirement during system

setup by means of a measurement.

2.9.3 Storing data in the non-volatile memory

The non-volatile memory has a limited amount of write operations. By the

design of the Irinos-System, this limit is typically not reached. The following

table lists the maximum number of write operations:

35

82

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

System function
Maximum number
of write operations

Note

Diagnostic memory 4,8 Millions

Measurement
channel
configuration

200.000

Executed via

o NmxDLL:

NMX_ChannelSetConfi

g

o MscDLL: Opcode

opcWCC.

Network
configuration

200.000
Changing the IP
settings.

Firmware update 100.000

2.10 Specifications & Dimensions

Detailed technical data can be found in the data sheet of the respective

Irinos box.

83

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

2.10.1 Common specifications

Measurement value recording

Static / continuous measurement Update rate ca. 30 Hz for smooth

online display

Realtime sampling Up to 4.000 samples/s on all channels

simultaneously, i.e.

1 channel -> Total sample count:

4.000 measurement values/s

17 channels -> Total sample count

68.000 measurement values/s

32 channels -> Total sample count

128.000 measurement values/s

See also chapter synchronization and

speed .

Synchronization Simultaneous acquisition of all

measurement channels.

Synchronous measurement value

acquisition, also via cascaded Irinos

boxes.

27

84

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos EC Users Manual

Cascading / EC-Link-Interface

Maximum number of Irinos-Boxes 8

Maximum number of measurement

channels

Depending on the number of

channels of the Irinos boxes used.

For example with EC-TFV maximum

64 measurement channels.

Maximum cable length EC-Link 10 m (Total length of the EC-Link -

wiring)

Under certain circumstances more on

request.

Termination Automatically

Box-Adressing Automatically

Case for EC-TFV , EC-INC

Design housing aluminium black

anodized, back plate stainless steel,

front plate black powder-coated

Dimensions 120 x 85 x 49 mm (H x W x D)

Protection Similar to IP54

Connections for probes and digital

inputs/outputs according to the

respective connector specification.

Befestigung Standard Via two screws M4

Befestigung Zubehör Adapter for DIN rail mounting

35

41

41

Irinos Tool Users Manual

86

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

3 Irinos Tool Users Manual

3.1 Introduction

3.1.1 Imprint

Title Irinos-Tool users manual

Manufacturer Messtechnik Sachs GmbH

Siechenfeldstraße 30/1

D-73614 Schorndorf

Germany

Phone +49 7181 99960-0

post@messtechnik-sachs.de

For use with Measurement modules Irinos IR

Copyright note © 2019-2020 Messtechnik Sachs GmbH

Trademarks All product names used in this manual are

trademarks of their respective owners.

Material-No. 785-1019

Change not Subject to change without notice.

Release date 05.06.2020

3.1.2 Revision history

Ve

rsi

on

Dat

um

Changes

A

87

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

3.1.3 Terms of use for software & documentation

I. Protection rights and scope of use
Messtechnik Sachs provides operating instructions, manuals,
documentation, and software programs - all collectively
referred to as "LICENSED OBJECT" below - either on portable
data storage devices (e.g. diskettes, CD ROMs, DVDs, etc.), in
written (printed) form or in electronic form, for a fee and/or
free of charge. The LICENSED OBJECT is subject to proprietary
safeguarding provisions among other regulations. Messtechnik
Sachs or third parties have protection rights for this LICENSED
OBJECT. In so far as third parties have whole or partial right
of access to this LICENSED OBJECT, Messtechnik Sachs has the
appropriate rights of use. Messtechnik Sachs permits the user
the use of the LICENSED OBJECT under the following conditions:

1.1) Scope of use for electronic documentation
a) With the acquisition/purchase or relinquishment of a

LICENSED OBJECT, you as the user acquire a simple, non-
transferable right of use with regard to the respective
LICENSED OBJECT. This right of use authorises the user to
use the LICENSED OBJECT for the user's own, exclusively
company-internal purposes on any number of machines within
the user's business premises. This right of use includes
exclusively the right to save the LICENSED OBJECT on the
central processors (machines) used at the location.

b) Irrespective of the form in which operating instructions
and/or documentation are provided, the user may furthermore
print out any number of copies on a printer at the user's
location, providing this printout is printed with or kept in
a safe place together with these complete terms and
conditions of use and other user instructions.

c) With the exception of the Messtechnik Sachs logo, the user
has the right to use pictures and texts from the operating
instructions/documentation for creating the user's own
machine and system documentation. The use of the Messtechnik
Sachs logo requires written consent from Messtechnik Sachs.
The user is responsible for ensuring that the pictures and
texts used match the machine/system or the product.

d) Further uses are permitted within the following framework:
Copying exclusively for use within the framework of machine and
system documentation from electronic documents of all
documented supplier components. Demonstrating to third parties
exclusively under guarantee that no data material is stored
wholly or partly in other networks or other data storage
devices or can be reproduced there.
Passing on printouts to third parties not covered by the
regulation in item 3, as well as any processing or other use
are not permitted.

1.2) Scope of use for software products
For any type of Messtechnik Sachs software including the
associated documentation, the customer shall receive a non-
exclusive, non-transferable and time-unlimited right of use on
a certain hardware product or on a hardware product to be
determined in individual cases. Messtechnik Sachs shall remain
the owner of the copyright as well as of any other industrial

88

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

property rights. The customer may make copies for back-up
purposes only. Any copyright notes may not be removed.

2. Copyright note
Every LICENSED OBJECT contains a copyright note. In any
duplication permitted under these provisions, the corresponding
copyright note of the original document concerned must be
included:
Example: © 2016, Messtechnik Sachs GmbH,

D-73614 Schorndorf

3. Transferring the authorisation of use
The user can transfer the authorisation of use re. the
respective LICENSED OBJECT as per these provisions in the scope
and with the limitations of the conditions in accordance with
items 1 and 2 completely to a third party. The third party
must be made explicitly aware of these terms and conditions of
use.

II. Exporting the LICENSED OBJECT
When exporting the LICENSED OBJECT or parts thereof, the user
must observe the export regulations of the exporting country
and those of the acquiring country.

III. Warranty
1. Messtechnik Sachs products are being further developed with
regard to hardware and software. If the LICENSED OBJECT, in
whatever form, is not supplied with the product, i.e. is not
supplied on a data storage device as a delivery unit with the
relevant product, Messtechnik Sachs does not guarantee that the
electronic documentation corresponds to every hardware and
software status of the product. In this case, the printed
documentation from Messtechnik Sachs accompanying the product
is alone decisive for ensuring that the hardware and software
status of the product matches that of the electronic
documentation.
2. The information contained in an item of electronic
documentation can be amended by Messtechnik Sachs without prior
notice and does not commit Messtechnik Sachs in any way.
3. Messtechnik Sachs guarantees that the software program it
created agrees with the change description and program
specification but not that the functions included in the
software run entirely without interruptions and errors or that
the functions included in the software can run or meet the
requirements in all combinations selected by and in all
conditions of use designated by the acquirer.

IV. Liability/limitations on liability
1. Messtechnik Sachs provides LICENSED OBJECTS to allow the
user to use - in conformity with the contract - Messtechnik
Sachs products which require software for proper operation, or

89

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

to assist the user in creating the user's machine and system
documentation. In the case of electronic documentation which in
the form of data storage devices does not accompany a product,
i.e. which is not supplied together with that product,
Messtechnik Sachs does not guarantee that the electronic
documentation separately available/supplied matches the product
actually used by the user.
The latter applies particularly to extracts of the documents
for the user's own documentation. The guarantee and liability
for separately available/supplied portable data storage
devices, i.e. with the exception of electronic documentation
provided on the Internet/Intranet, are limited exclusively to
proper duplication of the software, whereby Messtechnik Sachs
guarantees that in each case the relevant portable data storage
device or software contains the latest status of the
documentation. In respect of the electronic documentation on
the Internet/Intranet, it is not guaranteed that this has the
same version status as the last printed edition.
2. Furthermore, Messtechnik Sachs cannot be held liable for the
lack of economic success or for damage or claims by third
parties resulting from use of the LICENSED OBJECTS by the user,
with the exception of claims arising from infringement of
protection rights of third parties concerning the use of the
LICENSED OBJECTS.
3. The limitations on liability as per paragraphs 1 and 2 do
not apply if, in cases of intent or wanton negligence or lack
of warranted quality, liability is absolutely necessary. In
such a case, the liability of Messtechnik Sachs is limited to
the damage recognisable by Messtechnik Sachs when the specific
circumstances are made known.

V. Safety guidelines/documentation
Guarantee and liability claims in conformity with the
regulations mentioned above (items III and IV) can only be made
if the user has observed the safety guidelines of the
documentation in conjunction with use of the machine and its
safety guidelines or the terms and conditions of use of the
software. The user is responsible for ensuring that the
electronic documentation, which is not supplied with the
product, matches the product actually used by the user.

3.1.4 Preface

3.1.4.1 Purpose

Warning

Carefully read this complete users manual and all related

documentation before setup and use of the Irinos-System. This

applies especially to the safety instructions.

Misuse may lead do death, serious injury, injury or damage of

man, equipment or machine.

90

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

3.1.4.2 Scope of this manual

This manual describes the setup- and diagnostic-software "Irinos-Tool",

which is used together with the industrial measurement system "Irinos".

3.1.4.3 Intended use

Irinos is a flexible High-Speed measurement system for the industrial

production measurement technology.

The measurement device is not appropriate for use in medical fields or in

explosive areas, for aerospace and for home- or office use. Other fields of

application, which are not mentioned but similar, are also excluded from use.

In safety critical areas, the safety in operation must be ensured by external

equipment (e.g. external emergency stop).

Please note:

Warning

Products from Messtechnik Sachs GmbH must only be used for

applications, which are mentioned in the dataheet or in the

related documentation. If third party products are used, these

must be recommended or permitted by Messtechnik Sachs GmbH.

Proper and safe operation of the products require appropriate

transportation, storage, mounting, usage and maintenance.

Environmental conditions stated in the specification must be

observed as well as notes in the related documentation.

3.1.4.4 Required knowledge

For using the Irinos-Tool general knowledge in using Windows-based

software is required.

For the Irinos-System applies:

For the mechanical integration and mounting, solid knowledge and skills in

mechanics and machinery are required.

For the electrical installation and the setup, solid knowledge and skills in

electrics and electrical safety are required.

91

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

For the setup of the measurement application, profund knowledge in

industrial measurement technology is required as well as PC skills.

3.1.4.5 Further documentation

Please note the short booklet, which is delivered with each Irinos module.

This applies especially to the safety warnings, which are mentioned in it. The

specifications of the Irinos-Boxes can be found in the respective datasheet.

Before using the Irinos-System, please read the users manual carefully.

3.1.4.6 Firmware & Software version

This users manual is related to the Irinos Firmware version V1 and the Irinos-

Tool V2.0.

Screenshots may show an older version. These are only updates, if the user

interface has changed significantly.

3.1.5 About this help

This document describes how the connection between the Irinos system and

a host computer is set up. Furthermore, a detailed description of the Irinos-

Tool is given. The Irinos-Tool provides a set of functions which support

o connection establishment and verification

o inventory visualization

o configuration setting

o functional tests and

o firmware updates.

Note: It is assumed that the reader is familiar with IP networking principles

such as IP address handling, the concept of subnets and finally DHCP.

3.1.6 System overview

As shown in the following figure, the physical connection between the Irinos-

System and the PC is made via an Ethernet cable. Typically it has an M12

connector for the Irinos Master-Box and a RJ45 connector for the PC.

92

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

System overview

The communication itself is based on the commonly used UDP and IP

protocols.

Basically, network devices need to be configured before a communication

link can be established. In particular, IP settings are mandatory on both sides

of the communication link. Both, the Irinos Master-Box and the host

computer need to be equipped at least with an IP address, and a subnet

mask. In some cases a default gateway is configured as well.

If set manually, IP settings on the Windows host are done in the Windows

Control Panel. For the Irinos system the Irinos Tool is provided, which enables

the user to execute basic network settings. Additionally it contains a broad

set of utilities, which support putting the Irinos system into operation. A

detailed description of the Irinos Tool is given in chapter 3.2.

Manual IP setting, however, is often cumbersome and may not necessarily

lead to established communication links. A better choice is DCHP (Dynamic

Host Configuration Protocol), a network protocol which handles this task

more reliable and user-friendly. DCHP basically knows two roles: A DHCP

server, who is responsible for handling a pool of IP addresses, and a DHCP

client, who queries the server for an IP address.

The Irinos Master-Box provides such a DHCP server. The DCHP Server is

active by factory defaults, so the task of providing proper IP settings can fully

be delegated to the DHCP function.

As a prerequisite, the network setting on the Windows computer need to be

set accordingly.

https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

93

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

3.2 Quick start guide

3.2.1 Requirements

This quick start guide is intended for the standard use case, where the

o Irinos Box is on factory defaults, i.e. the Irinos DHCP Server is on.

o Standard IP settings, as set by the Irinos DHCP Server

§ Irinos Box 192.168.3.99,

§ PC Network adapter 192.168.3.100

are compatible with the customer network policy.

o Irinos box is linked to the host computer.

o User is familiar with the Windows operating system and the IP/DHCP

settings at the local host computer.

3.2.2 PC network settings

As a prerequisite on the host computer, the network adapter settings need to

be set to DHCP client mode. Therefore it is advisable to check these settings:

1. Open Windows Control Panel and follow Network and Internet -> View

Network Status and Tasks –> Change Adapter Settings

2. Select adapter and right-click “Properties”

3. Select “Internet Protocol Version 4 (TCP/IP)” and press the “Properties”

Button

The following window opens:

94

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

PC IP V4 configuration (DHCP active)

General Settings:

4. Select “Obtain an IP address automatically”

If the network adapter settings are configured as in the screenshot above, no

further action is required.

3.2.3 Irinos configuration and connection check

A main benefit of the built-in DCHP server is the simplified connection setup.

As the IP settings of the Master-Box are preset, no user-triggered settings are

required. The Irinos-System can be connected without applying any settings.

Once the Irinos-System is supplied with power and connected to the host

computer, the Irinos Tool should be able to identify the box in the network.

Every box found will be presented as one row in the main window of the

Irinos Tool:

95

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

Start screen of the Irinos-Tool

A double-click on the table row will open the IP Settings window.

It can be used to review the IP settings of the Master-Box, or to modify the

settings. As long as the DHCP server is active (Setting ‘DHCP’ is on selection

‘DHCP Server’) no modification is necessary.

96

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

IP configuration window

As a final test, a verification of the interface access by means of the provided

MscDll should be executed. This is triggered by selecting the appropriate

table row and pressing the ‘Connect Button’.

A successful connection check is indicated as shown in following figure:

97

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

Connection Test via the MscDll

The connection check result is displayed in the column ‘DLL State’, the same

applies for the returned DLL Device Info.

Along with the verification of the DLL connection, the configuration file

MSC.cfg is created automatically. This file is necessary to specify the IP

address for the MscDll.dll.

The file location of the file MSC.cfg is displayed in the bottom status bar.

From this location it can be copied to the measurement software

application.

3.3 PC network connection

3.3.1 Ethernet connection

A standard LAN is used to interconnect the Irinos Master-Box and the PC.

State of the art network adapters support Auto-MDI(X), a feature to detect

the type of cabling used (direct, cross-over) and thereby can work with both

types.

However, some very old legacy network adapters, which do not support

Auto-MDI(X), might require a cross-over cable to connect the Irinos box.

98

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

3.3.2 Network interfaces

Basic network settings need to be configured before a PC is able to

communicate with any other network device. Adopting these setting is done

by opening the Windows Control Panel. In the Windows Control Panel follow

Network and Internet -> View Network Status and Tasks –> Change Adapter

Settings.

Network Adapters are displayed as depicted in the following screenshot.

Each icon represents a network adapter and displays the connection status: a

red cross is shown if no network cable is plugged in. It is removed as soon as

a cable connected to another network device is plugged in.

All network adapters not connected

Determining the assignment of the network adapter

Following it is illustrated, how network connections and corresponding LAN

sockets can be identified by plugging in or removing the network cable.

1. No network cable plugged in

All network adapters are shown with a red cross:

99

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

2. Using the first network adapter

The network cable is plugged into LAN1. Hence one of the connections is

shown without the red cross:

3. Using the second network adapter

The network cable is plugged into LAN2. Hence one of the connections is

shown without the red cross::

100

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

3.3.3 Network settings

3.3.3.1 IP configuration using DHCP

The Irinos System supports easy-to-use connection establishment by a built-

in DHCP server. As a factory default, the DHCP server is active and provides

basic settings for the network adapter. However, if needed, the DHCP server

may be switched off by the Irinos Tool and IP settings can be configured

manually .

If DCHP is to be used, it is mandatory that the network adapter settings are

set to DCHP mode, too. To verify these settings, right-click onto the “Local

Area Connection x” item, then selecting the “Properties” item.

An input mask is opening:

105

102

101

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

-> Select “Internet Protocol Version 4 (TCP/IP)” and press the

“Properties” Button.

An input mask is opening:

102

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

-> Select “Obtain an IP address automatically”.

3.3.3.2 IP configuration without DHCP

If the built-in DHCP server of the Irinos-System shall not be used, it can be

switched off by means of the Irinos Tool.

If no DHCP server is used, the IP settings of the network adapter need to be

configured manually. An example is given below.

105

103

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

--> Select “Use the following IP address”.

Then enter IP address and Subnet mask:

Subnet mask 255.255.255.0 is recommended

The IP address needs to be in the same subnet as the device. For example, if

the subnet mask is chosen as above, the IP address may be in the range from

192.168.115.1

..

192.168.115.254.

However, it must be different from the one that is used in the Irinos master

box.

The settings for the Default Gateway may be left blank. The same applies for

the DNS settings.

Finally press “OK” to adopt these settings.

The IP address of the Irinos master box is set in the MSC.cfg file. This file can

be generated automatically using the Irinos-Tool.109

104

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

3.4 Irinos-Tool

3.4.1 General

The Irinos Tool provides a set of utilities which support installation,

interconnection and start-up of the Irinos system. It is used to discover and

identify Irinos-Systems in an IP network and to configure network

settings .

It supports connection establishment and verification , inventory

visualization , measuring channel modifications , basic functional

tests and firmware updates .

Furthermore it is gathering information from the master box and generates

appropriate configuration files needed for the measurement system.

3.4.2 Installation

The Irinos Tool is delivered as a self-extracting compressed archive. To

install, double-click onto the archive-file and select a writeable file

location on your disk (refered to as ‘YourFolder’ in this document). It is

advisable to create a shortcut for the executable file ITool.exe in

YourFolder/ITool/source_XE8) and move this shortcut to the windows

desktop.

When the Irinos Tool is started the first time, a Windows firewall security

alert will pop-up and ask for an access decision. Please press ‘Allow access’.

3.4.3 Starting the Irinos-Tool

The Irinos V2.0 Irinos Tool is started by a double click on the desktop shortcut

created during installation .

During startup the Irinos Tool software is querying all activated network

adapters and sending broadcast messages to the attached network. Any

Irinos box connected to the network is responding with an appropriate

response message.

Thereby, the Irinos Tool is able to present a list of all found boxes in the

network right after start-up. Typically only 1 Irinos-System is found:

104

105

109

112 111

116 121

109

104

105

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

Startfenster des Irinos-Tools

Each table row represents one Irinos master box and contains

o Irinos Box IP Address

o Irinos Box Subnet Mask

o Irinos Box MAC Address

o IP Address of the network adapter the box is connected to

o Subnet Mask of the network adapter

o Network adapter type.

Changes within the network can be obtained by pressing the “Update”

button.

3.4.4 IP configuration

As the Irinos boxes are delivered with an activated DHCP server, in most

cases there will be no need to alter the IP configuration.

If the IP configuration needs to be changed, a double-click on a particular

row in the main window will open the IP Settings window. Initially the

window will open up as shown below, with an active DHCP server.

--> Setting DHCP: DHCP Server

106

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

If the DHCP setting is altered to “DHCP off”, the window will enable input

fields for

o Irinos IP Address

o Irinos Subnet Mask

o Default Gateway

107

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

The Irinos MAC address and the local computer’s network adapter IP address

and subnet mask are shown for guidance reasons only and cannot be

modified here.

Now IP Address, Subnet Mask and Default Gateway may be entered

according to the requirements of the customer network.

Before the settings are sent towards the Irinos System, several consistency

checks are executed:

o Illegal IP addresses such as 127.0.0.1, 127.0.0.0, 255.255.255.255 are refused.

o Does the chosen IP address match the subnet of the local network

adapter ?

o Is the chosen IP address the same as the local network adapter IP address ?

o Is a standard IP range used (10.0.0.0 to 10.255.255.255, 172.16.0.0 to

172.31.255.255, 192.168.0.0 to 192.168.255.255)

Illegal IP addresses cannot be sent, any other setting can be used after the

user has explicitly confirmed his choice.

After the configuration settings were sent to the Irinos-System, it performs a

reset. While executing the reset, the appropriate table row in the main

window may disappear, if the update button is pressed within this time

102

108

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

period. After approximately 10 seconds the Irinos-System is reachable

again. Anew pressing the update button is causing the appropriate table row

to show up again. If the Irinos-System setting had been modified, the new

settings are now being displayed in the table row.

3.4.5 Direct IP settings

The Direct Input function is not needed for normal operation. It can be

used to specify IP setting directly, without picking the Irinos box from the

main window list. Moreover, it requires the user to specify IP address and

MAC address accurately and, if more than one, select the network adapter

the Irinos box is connected to.

This function is intended for cases, where an Irinos box is not showing up in

the main window although connected to the computers network adapters.

This might be the case when it has been configured with an IP address which

is not part of the subnet of the network adapter.

If so, the box can be reconfigured by directly entering the desired IP address

and the MAC address of the box. If several network adapters are present, the

appropriate network adapter needs to be selected as well.

It is possible to retrieve the last MAC address used for configuring the IP

settings of a box. This is done by the “Restore last MAC address” button

By pressing the send button the IP settings are broadcasted to the network

attached to the selected network adapter. If there is an Irinos box listening to

the given MAC address, it is going to alter its IP address to the one specified,

and performs a reset. Once it has recovered from reset, and the new IP

address is part of the subnet, it is displayed in the main window again, upon

pressing the update button.

109

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

3.4.6 Checking the connection via the MscDll

To interface any kind of measurement software with the Irinos-System, a

dynamically linked library (DLL) named “MscDll.dll” is provided with the

Irinos system. This DLL contains basic discovery and access methods to

connect to the Irinos box and to establish measuring channels between

measurement system and local host computer.

For that reason it is recommended to verify these communication principles

before continuing with the final measurement software.

First, as a pre-requirement for communicating with the Irinos box, the IP

address of the Irinos master box has to be set in the DLL’s configuration file

“MSC.cfg”. From this file the IP address is read by the DLL during start-up.

The process of writing the IP address to the configuration file is done

automatically by the Irinos Tool, whenever the DLL Connection Verification is

started.

Triggering the connection check is done by selecting the appropriate table

row and pressing the ‘Connect’ button.

If the connection check turns out ok, the “DLL State” column is showing a

green tic followed by a “Connect” indication. Additionally the DLL Device

Info, as returned from the DLL, is inserted into the last column of the table.

Second, the connection status is shown at the bottom status bar by a green

field displaying “Connected to box- ip- address”.

110

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

Third, the next field of the bottom status bar indicates the location of the DLL

configuration file “MSC.cfg” at the disk and the date/time it was written.

If the connection check fails, the “DLL State” column is showing a red error

sign followed by the error reason, as delivered by the DLL while trying to

access the box. The connection status at the bottom status bar indicates “Not

connected”.

Regardless of the result of the connection check, the location of the DLL

configuration file “MSC.cfg”, is depicted in the second field of the bottom

status bar.

111

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

Reasons for an unsuccessful connection check may be

• No physical connection

• Network adapter not enabled

• No power at the Irinos box

3.4.7 Channel Assignment / Selecting incremental input type

The Channel Assignment function of the Irinos Tool retrieves the measuring

channel structure of the Irinos system. The channel assignment is generated

by the master box directly after power-on.

It reflects the interconnection of the Irinos boxes and their respective

measuring channels. Each single box contributes a certain amount of

channels to this structure.

Incremental encoders are characterized by the type of signal they provide at

the encoder interface. Two interface specifications are commonly used:

o Encoders providing sinusoidal 1 Volt peak-to-peak signals (referred to as

‘1Vpp’ types) and

o Encoders delivering a square-wave TTL/RS422 signal (referred to as ‘TTL’

types).

112

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

According to the type of the encoder, the corresponding Irinos box needs to

be preset with the encoder types to be operational. These pre-settings are

configured as factory defaults, either 1Vpp or TTL for all channels of a box.

The user might want to alter this setup, for instance to adopt to a

configuration which includes both types.

The graphical representation of the channel assignment, as displayed on the

left-hand side of the function window, enables the user to alter these channel

characteristic.

To modify this channel characteristic, select a channel by clicking the

appropriate table row, then click one of the buttons

o Set channel to 1Vpp mode

o Set channel to TLL mode

Modifying a channel characteristic from given factory defaults enables the

user to configure his own setup of 1Vpp and TTL channels as needed.

3.4.8 Inventory

The Inventory function of the Irinos Tool retrieves the structure of the Irinos

system and displays the composition of boxes.

Additional module dependent data is displayed, such as

• Logical Box Number

• Box Type

113

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

• Box Label

• MAC Address

• Firmware Version

• Event (If any event is currently active in the box)

Changes can be obtained by pressing the “Update” button. However, any

modification to the system setup, such as adding or removing boxes, requires

a power-off-power-on cycle at the master box before it can be detected by

the Irinos Tool.

By double-clicking the table row, detailed box data is displayed in a separate

window:

114

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

The Inventory display serves as a basis for the functions

• Set Time

• Firmware Update

• Event configuration

All of those functions are accessible by selecting the appropriate table row in

the Inventory display.

3.4.8.1 Setting date/time

--> This function is only available for the Irinos Master-Box.

By this function the current clock time and date is sent to the Irinos system.

Thus, the Irinos system is able to generate an absolute time reference. The

absolute time is held in the Irinos system until it is powered off or reset.

All upcoming events will be equipped with a time stamp on a clock time

basis which enables an accurate correlation between event occurrence and

time of day.

114

121

115

115

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

Within the Irinos Tool, this function serves as a test and analysis resource.

When used in measurement software this function should be used once a day

to ensure sufficient time accuracy. See the MscDll reference manual for

details.

3.4.8.2 Event configuration

The Event Setting window displays the event handling capabilities of the

Irinos system per box. The Irinos System supports several configuration

options regarding event handling. The behavior of some event types is user-

modifiable. For each event type several configuration options are displayed:

116

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

Event Count Number of event occurrences

Event Enabled Event handling is generally enabled.

Event Enabled modifiable Is the event handling user modifiable?

I.e. is the user allowed to turn this

event on and off?

Max. Number of Events How often will this event be logged in

the diagnostic memory.

Max. Number of Events modifiable Is this value (Max. Number of Events)

user modifiable? I.e. is the user

allowed to alter this value from 10

(default) to any other value?

Number of events Number of events of this type since

system start.

The Irinos Tool is intended only to display these settings. To actually

modify these settings, please refer to the reference manual of the MscDll for

the Irinos System.

3.4.9 Static measurement

The Irinos Tool provides a measurement display to check and analyze

measurement data from each measurement channel.

Once started, it displays “live” data received from the Irinos system. Up to 16

channels are displayed simultaneously. If the system comprises more than 16

channels the user is able to switch to the next set of 16 channels by use of the

arrow keys.

Furthermore, it is possible to alter the value display from digits to physical

units (such as micrometers, volt, etc.) by means of a tick-box.

117

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

Static measurement is automatically set-up by verifying the connection , as

it is used as a timeout-monitoring function. Whenever the user directly enters

the Static Measurement window, it might be necessary to start the static

measurement by means of the “Start” button.

3.4.10 Dynamic measurement

Similar to the static measurement display, the Irinos Tool facilitates setup

and verification of dynamic measurement.

To minimize configuration effort only time-triggered measurements are

supported. The user only needs to select the desired channels, define number

of measurement values and a timer trigger interval before he can start the

dynamic measurement.

The channel selector offers a predefined list of channels for easy setup.

However, it is possible to modify the list i.e. the user can add or remove

channels on a textual basis, as long as the semicolon-separated format is

retained (e.g. T1;T2;T3;T9).

109

118

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

3.4.11 Digital in- & outputs

Requires the IrinosTool version 2.0.1.7 or newer.

The tab Digital-I/O (Bit I/O) provides an online view for up to 128 digital

inputs and allows changing the state of up to 128 digital outputs:

Digital in- & outputs

119

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

The table "input" shows the status of the digital inputs connected to the

Irinos-System. A check-mark in the checkbox signals the high-level of the

digital output.

The table "output" allows enabling or disabling digital outputs directly. If a

checkbox is checked, the corresponding digital output will be set to high.

3.4.12 Diagnostic memory

For diagnostic reasons, the Irinos system gathers all events reported by the

local firmware in a non-volatile event memory. Events can be visualized via

the built-in web server, or alternatively upon request within the Irinos Tool.

Diagnostic events are displayed for the entire system, i.e. event data is

gathered box by box and finally displayed as a system-wide view. Grouping

and sorting of events is supported to facilitate easy cross-box event analysis.

A diagnostic memory entry has the followings attributes:

120

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

Box-Nbr Number of the Irinos-Box: the event

occurred at the Irinos-Box with this

address.

Nbr Event number (per Box)

Event Type Event type (numerical value)

Event description Event type as text

Add. Info Additional information for the cause

of the event

Absolut Time Date/Time the event occurred (only

available, if the absolute time has

been set before).

Internal Time Internal system time (ILink-Time, [µs])

Firmware version Firmware version at the time the event

occurred.

Debug Info Further information for manufacturer

support.

Newly-created events can be obtained by the update buttons.

If required, the entire event data can be saved into a CSV file by pressing the

“Save CSV file” button. After pressing the button a file selection dialogue is

displayed. File name and location can be specified by the user.

3.4.13 Firmware update

3.4.13.1 Version numbers

The version number of the firmware consists of 4 parts, which are separated

by a dot, e.g. V1.3.4.534. The meaning of the parts is:

121

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

Part of the version number Meaning

1. Part, in the example: 1 "Major" version number

It is incremented, if the firmware is

completely redesigned (-> happens

seldom).

2. Part, in the example: 3 "Minor" version number

It is incremented, if new functionality

has been implemented.

3. Part, in the example: 4 "Patch"

It in incremented, if one ore more

bugs have been fixed.

4. Part, in the example: 534 "Build"

Internal number for firmware

identification.

In addition, firmware can be marked as "customer specific" or as "Beta

version". A warning note is displayed before such a firmware can be

downloaded. It must only be used after written notice by Messtechnik Sachs.

3.4.13.2 Executing the update

A basic feature of the Irinos Tool is to support firmware updates for the Irinos

System.

A firmware package is delivered by Messtechnik Sachs GmbH as particular

type of file with the extension “SFF”. Firmware Files are issued box type

specific. I.e. a firmware package developed for an incremental encoder box

can only be used for this type of box.

While setting up the Irinos Tool, a file folder “Firmware” is created in the

“source_XEn” directory. Firmware files need to be put here to be found by the

Irinos Tool.

After the firmware files have been put there, the Irinos Tool needs to be

restarted. During start-up the firmware files are read and evaluated.

If a new firmware package is found for a particular box type, the firmware

version is highlighted in red in the Inventory window. Additionally, a hint is

122

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

shown, indicating that a firmware update for those boxes is available. After

selecting the appropriate box by clicking the table row, pressing the

‘Firmware Update’ button will open the firmware download window:

If more than one firmware package for a box type has been found, the

Firmware Download window offers a selection table for the different

firmware packages. Once the user has selected a package by clicking the

appropriate entry, the download can be started by pressing the “Download”

button:

123

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

If only one firmware package for the box type has been detected, the

Firmware Download window automatically selects the package. The

download can be started by pressing the “Download” button:

After all packages have been downloaded to the Irinos system, a system reset

is required to activate the downloaded firmware. Pressing the “Reset” button

sends an appropriate command to the Irinos system.

An internal algorithm ensures that slave boxes are reset first, before the

master is resetting. This is necessary as the master always requires slaves to

be operational, when returning from reset.

124

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

3.4.14 Incremental channel diagnostics

3.4.14.1 Live view (only 1Vpp)

If incremental encoders with 1Vpp interface are used, a high signal quality is

required for an accurate and reliable position value. The incremental input

channels of the Irinos-System are equipped with a sophisticated signal

analysis. Therefore the Irinos-System is able to detect errors, where many

other systems would deliver a possibly invalid position value.

A signal level outside of the specified range may lead to an invalid position.

The incremental channel will then provide an error flag in the hardware

status. Further information can be found in the application notes in the users

manual and in the MscDll reference manual (opcRHS).

The Irinos-Tool provides a live-view of the incremental encoder signals in a

Lissajous diagram. In such a diagram, the signal level of the sine-signal is on

the x-axis and the corresponding cosine-signal signal level is on the y-axis. If

ideal signal levels would be available, a perfect circle would be the result if

the encoder would move one electrical rotation. In reality such signals never

exist.

The following examples show various signal levels:

Live view with unstable signals

125

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

Live view with very good signal levels

For technical reasons, the signals never exactly match the specified 1Vpp

input level. Hence the Irinos-Box IR-INC has a tolerance range of 0.6Vpp ..

1.2Vpp.

Lissajous diagram

The Lissajous diagram allows estimating the signal quality of the incremental

encoder. Therefore the raw values are continuously requested from the

incremental input channel of the Irinos-System. The live view can be started

as follows:

1. Connect to the Irinos-System.

2. Open the Live view via Menu -> Incremental encoder.

3. Select the desired input channel (e.g. T3).

4. Press "Start".

5. Move / rotate the incremental encoder.

The resulting signal vector if the input signals ("raw values") will no be

displayed. If the signal vector is next to the ideal signal level, it will be

coloured green. The more it deviates, the more the colour changes to yellow,

orange or red.

109

126

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

The inner and outer limits are displayed as a white circle.

Lissajous diagram

The Irinos-Box continuously corrects the input signal via its offset- and gain-

control functionality. The corrected values are displayed in blue. Most of the

signal deviations can be corrected. However, if the signal levels become too

low or too high, this is technically impossible.

This example diagram shows large deviations of the input signal. Most of the

values are green, but some are yellow or orange. This diagram has been

recorded during moderate speed. If the speed increases, it is likely that the

input signals will be out of specification.

Numerical values

Next to the Lissajous diagram, the corresponding numerical values are

displayed:

127

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

Numerical values

Position Measurement / position value of

the incremental input channel

Gain Cosinus Gain factor for the cosine signal. It

is continuously updated by the

internal gain control.

Offset Cosinus Offset for the cosine signal. This

value is continuously updated by

the internal offset control.

Gain Sinus Gain factor for the sine signal. It is

continuously updated by the

internal gain control.

Offset Sinus Offset for the sine signal. This value

is continuously updated by the

internal offset control.

PHI Phase angle of the input signal.

0 -> 0°

200 -> 360°

ADC Cosinus Analogue voltage measured at the

cosine signal input.

For an ideal signal, this value is in

the range between -500mV ..

+500mV.

ADC Sinus Analogue voltage measured at the

sine signal input.

For an ideal signal, this value is in

128

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

the range between -500mV ..

+500mV.

Error

Different error statuses are displayed via the respective error bits (green = ok,

red = error):

Error flags

Error-Flag Reason

EVLOW The signal vector generated from

the sinusoidal and cosinusoidal

signals is smaller than 30% of the

nominal amplitude. Usually, the

cause is a partly or completely

disconnected sensor.

Another cause are input signals

with a very large offset and a low

amplitude at the same time.

ECADC The A/D converter for the cosine

signal is overdriven. The cause is

that the signal amplitude is too

high. This error may also occur with

129

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

signals with very large offset at

simultaneously high amplitude.

ESACD The A/D converter for the

sinusoidal signal is overdriven. The

cause is that the signal amplitude is

too high. This error may also occur

with signals with very large offset

at simultaneously high amplitude.

EFAST The input frequency is so high that

the direction can no longer be

detected.

EABZ Internal error flag, which is

disabled for standard applications.

ECGAIN The gain controller for the cosine

signal has reached its limit. The

cause is either that the signal

amplitude is too low or the sensor

is partly or fully disconnected.

ESGAIN The gain controller for the sine

signal has reached its limit. The

cause is either that the signal

amplitude is too low or the sensor

is partly or fully disconnected.

ECOFF The offset controller for the cosine

signal has reached its limit. The

cause is an excessive signal offset

or a partly or fully disconnected

sensor.

ESOFF The offset controller for the sine

signal has reached its limit. The

cause is an excessive signal offset

or a partly or fully disconnected

sensor.

Please note regarding errors:

130

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

Because of the limited data bandwidth, the live view only shows a part of the

available raw values. Therefore it may happen that an error occurs but no

corresponding value is visible in the live-view.

Reference index

The Bit ZSTAT becomes enabled once the reference index has been crossed.

3.4.14.2 History (only 1Vpp)

Requires the IrinosTool version 2.0.1.7 or newer.

If incremental encoders with 1Vpp interface are used, the signal quality has a

major impact on the reliability of the measurement system. If the signal

levels are out of specification, this can lead to measurement errors, which are

detected by the Irinos-System.

To get a better understanding, why an error occurred, the Irinos-System

stores the last 1000 signal values (-> 1 second) before the error. These can be

readout using the incremental encoder history of the Irinos-Tool. Like in the

live view , they can be displayed in a Lissajous diagram. Alternatively they

can be displayed over time.

The following screenshot shows an example of a Lissajous diagram (tab

"Polar"). Similar to the live view, the measurement values are coloured

according to the signal quality. Green ones are very good. If the signal quality

becomes worse, they are coloured in yellow, orange or red (worst).

In the example, the final 16 values are displayed in red, showing a very poor

signal quality.

124

131

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

Another possibility is displaying the values over time:

Two vertically arranged diagrams allow for a time-based correlation of

different values. Via selection menus besides the diagrams, the values to be

displayed can be selected:

o Absolute value of the ADC-Signals (corresponds to the signal vector)

132

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Irinos Tool Users Manual

o Absolute value of the corrected ADC signals (as shown in the example

above)

o Sine value of the ADC signals

o Cosine value of the ADC signals

o Corrected sine value

o Corrected cosine value

In addition to this, the error flags can be displayed. The different error flags

are listed in the live-view chapter.124

NmxDLL Reference Guide

134

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

4 NmxDLL Reference Guide

4.1 Introduction

4.1.1 Imprint

Title Nmx DLL reference manual

Provided by Messtechnik Sachs GmbH

Siechenfeldstraße 30/1

D-73614 Schorndorf

Germany

Phone +49 7181 26935-0

post@messtechnik-sachs.de

For use with Irinos Measurement modules, Type IR and EC,

Firmware version 2 and upwards

Copyright note © 2019-2020 Messtechnik Sachs GmbH

Messtechnik Sachs GmbH

Trademarks All product names used in this manual are

trademarks of their respective owners.

Change note Subject to change without notice.

Release date 05.06.2020

4.1.2 Revision history

Ve

rsi

on

Dat

um

Changes

A 201

9-

05-

05

First revision

B 201

9-

Documentation of .Net-DLL added.152

135

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

05-

24

C 202

0-

05-

08

New: High-Level sampling, type TFT

Minimum DLL version: 1.1.0.11

D 202

0-

06-

05

New: Position triggered sampling

Minimum DLL version: 1.2.0.13

In addition, some minor typos have been corrected.

4.1.3 Legal notes

4.1.3.1 Terms of use for documentation & software

I. Protection rights and scope of use
Messtechnik Sachs provides operating instructions, manuals,
documentation, and software programs - all collectively
referred to as "LICENSED OBJECT" below - either on portable
data storage devices (e.g. diskettes, CD ROMs, DVDs, etc.), in
written (printed) form or in electronic form, for a fee and/or
free of charge. The LICENSED OBJECT is subject to proprietary
safeguarding provisions among other regulations. Messtechnik
Sachs or third parties have protection rights for this LICENSED
OBJECT. In so far as third parties have whole or partial right
of access to this LICENSED OBJECT, Messtechnik Sachs has the
appropriate rights of use. Messtechnik Sachs permits the user
the use of the LICENSED OBJECT under the following conditions:

1.1) Scope of use for electronic documentation
a) With the acquisition/purchase or relinquishment of a

LICENSED OBJECT, you as the user acquire a simple, non-
transferable right of use with regard to the respective
LICENSED OBJECT. This right of use authorises the user to
use the LICENSED OBJECT for the user's own, exclusively
company-internal purposes on any number of machines within
the user's business premises. This right of use includes
exclusively the right to save the LICENSED OBJECT on the
central processors (machines) used at the location.

b) Irrespective of the form in which operating instructions
and/or documentation are provided, the user may furthermore
print out any number of copies on a printer at the user's
location, providing this printout is printed with or kept in
a safe place together with these complete terms and
conditions of use and other user instructions.

c) With the exception of the Messtechnik Sachs logo, the user
has the right to use pictures and texts from the operating
instructions/documentation for creating the user's own
machine and system documentation. The use of the Messtechnik
Sachs logo requires written consent from Messtechnik Sachs.

232

229

136

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

The user is responsible for ensuring that the pictures and
texts used match the machine/system or the product.

d) Further uses are permitted within the following framework:
Copying exclusively for use within the framework of machine and
system documentation from electronic documents of all
documented supplier components. Demonstrating to third parties
exclusively under guarantee that no data material is stored
wholly or partly in other networks or other data storage
devices or can be reproduced there.
Passing on printouts to third parties not covered by the
regulation in item 3, as well as any processing or other use
are not permitted.

1.2) Scope of use for software products
For any type of Messtechnik Sachs software including the
associated documentation, the customer shall receive a non-
exclusive, non-transferable and time-unlimited right of use on
a certain hardware product or on a hardware product to be
determined in individual cases. Messtechnik Sachs shall remain
the owner of the copyright as well as of any other industrial
property rights. The customer may make copies for back-up
purposes only. Any copyright notes may not be removed.

2. Copyright note
Every LICENSED OBJECT contains a copyright note. In any
duplication permitted under these provisions, the corresponding
copyright note of the original document concerned must be
included:
Example: © 2019, Messtechnik Sachs GmbH,

D-73614 Schorndorf

3. Transferring the authorisation of use
The user can transfer the authorisation of use re. the
respective LICENSED OBJECT as per these provisions in the scope
and with the limitations of the conditions in accordance with
items 1 and 2 completely to a third party. The third party
must be made explicitly aware of these terms and conditions of
use.

II. Exporting the LICENSED OBJECT
When exporting the LICENSED OBJECT or parts thereof, the user
must observe the export regulations of the exporting country
and those of the acquiring country.

III. Warranty
1. Messtechnik Sachs products are being further developed with
regard to hardware and software. If the LICENSED OBJECT, in
whatever form, is not supplied with the product, i.e. is not
supplied on a data storage device as a delivery unit with the
relevant product, Messtechnik Sachs does not guarantee that the
electronic documentation corresponds to every hardware and
software status of the product. In this case, the printed

137

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

documentation from Messtechnik Sachs accompanying the product
is alone decisive for ensuring that the hardware and software
status of the product matches that of the electronic
documentation.
2. The information contained in an item of electronic
documentation can be amended by Messtechnik Sachs without prior
notice and does not commit Messtechnik Sachs in any way.
3. Messtechnik Sachs guarantees that the software program it
created agrees with the change description and program
specification but not that the functions included in the
software run entirely without interruptions and errors or that
the functions included in the software can run or meet the
requirements in all combinations selected by and in all
conditions of use designated by the acquirer.

IV. Liability/limitations on liability
1. Messtechnik Sachs provides LICENSED OBJECTS to allow the
user to use - in conformity with the contract - Messtechnik
Sachs products which require software for proper operation, or
to assist the user in creating the user's machine and system
documentation. In the case of electronic documentation which in
the form of data storage devices does not accompany a product,
i.e. which is not supplied together with that product,
Messtechnik Sachs does not guarantee that the electronic
documentation separately available/supplied matches the product
actually used by the user.
The latter applies particularly to extracts of the documents
for the user's own documentation. The guarantee and liability
for separately available/supplied portable data storage
devices, i.e. with the exception of electronic documentation
provided on the Internet/Intranet, are limited exclusively to
proper duplication of the software, whereby Messtechnik Sachs
guarantees that in each case the relevant portable data storage
device or software contains the latest status of the
documentation. In respect of the electronic documentation on
the Internet/Intranet, it is not guaranteed that this has the
same version status as the last printed edition.
2. Furthermore, Messtechnik Sachs cannot be held liable for the
lack of economic success or for damage or claims by third
parties resulting from use of the LICENSED OBJECTS by the user,
with the exception of claims arising from infringement of
protection rights of third parties concerning the use of the
LICENSED OBJECTS.
3. The limitations on liability as per paragraphs 1 and 2 do
not apply if, in cases of intent or wanton negligence or lack
of warranted quality, liability is absolutely necessary. In
such a case, the liability of Messtechnik Sachs is limited to
the damage recognisable by Messtechnik Sachs when the specific
circumstances are made known.

V. Safety guidelines/documentation
Guarantee and liability claims in conformity with the
regulations mentioned above (items III and IV) can only be made
if the user has observed the safety guidelines of the

138

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

documentation in conjunction with use of the machine and its
safety guidelines or the terms and conditions of use of the
software. The user is responsible for ensuring that the
electronic documentation, which is not supplied with the
product, matches the product actually used by the user.

4.1.3.2 Qualified personnel

The product system described in this documentation must only be handled

by qualified personal according to the given scope of work. All

documentation relevant for the scope of work must be observed, especially

the safety and warning notes. Due to its education and experience, qualified

personal is able to identify risks and possible dangers when using this

products / systems.

4.1.3.3 Disclaimer

The content of this documentation has been carefully reviewed to comply

with the documented hard- and software. We can, however, not exclude

discrepancies and do therefore not accept any liability for the exact

compliance. This documentation is reviewed regularly. Corrections may be

contained in newer versions.

4.1.4 Preface

4.1.4.1 Purpose

This reference manual describes the functions of the NMX DLL for the use

with the measurement system. The target audience is software developers,

who want to integrate the DLL into their application software (measurement

software).

4.1.4.2 Scope of this reference manual

This reference manual is valid for the industrial measurement system Irinos

together with the NMX DLL. The NMX software interface is supported from

Firmware Version 2 and upwards.

4.1.4.3 Required knowledge

Profound knowledge in PC based software development using Windows is

required for integrating and using the NMX DLL.

4.1.4.4 Further documentation

This reference manual is limited to the software interface of your

measurement system.

For information about the measurement system, please consult its user

manual and technical specification.

139

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

4.2 Nmx DLL Overview

The NMX DLL is the link between the application software (measurement

software) and the Irinos-System. It supports the application in the following

fields:

o Read measurement values from the measurement system. Reading static or

sampled data is available.

o Read status information from the measurement system.

o Read / write digital in-/output data.

o Parametrize the measurement system.

The DLL provides a wide range of function calls . These allow for a flexible

use of the measurement system.

For small systems with limited requirements, just a few of these functions are

required.

140

153

140

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

In most use cases only one measurement system is connected. In this case

only one connection is required.

For very special applications, multiple measurement systems can be

connected. In this case up to 8 measurement systems can be connected in

parallel. These are distinguished by their "Handle".

4.2.1 Static vs. Sampling

Two different types of getting measurement and I/O data are available,

"static" and "sampling". Both can be used in parallel.

Static data acquisition is very easy to use and the perfect choice for many

applications. It is always active. The typical use case are measurement

applications, where the working piece is fixed ("static") during measurement.

The measurement and I/O data is updated continuously with an update rate

of approximately 30 Hz. The data is neither synchronized nor transferred in

realtime. The update rate is not guaranteed and can be longer due to data

packet loss.

It is started automatically after connecting to a device. The NMX DLL then

periodically request new data from the device. This data is copied into an

internal buffer. It can be readout at any time.

Often the static measurement is also used to achieve an online-view of the

current measurement values.

Sampling is used to gather synchronized real-time data from the device. The

typical use case are dynamic measurement applications, where high speed

and determinism are required, e.g. for getting measurement curves.

It can be limited in time or it can be endless. Once started, the measurement

system (device) acquires the measurement and digital I/O data in realtime

and stores it into the internal device buffer. From there it is transferred in

packets to the NMX DLL without real-time requirements.

Before starting sampling, various parameters must be defined, like the

measurements channels used, the digital in-/outputs used and the sample

period. Depending on the amount of sampled data and the sample period,

the sampling must be time limited or can be endless. Consult the user

manual / data sheet of your measurement system to see the possibilities.

Typically 1000 Samples/s are possible with a large number of measurement

channels.

The NMX DLL supports two general types of sampling:

· Low-Level sampling offers the possibility to perform time-triggered

measurements. It provides the highest flexibility.

141

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

· High-Level sampling provides a simplified interface for performing

complex real-time measurement tasks, e.g. position-triggered sampling.

Internally it always uses Low-Level sampling. Therefore it is always optional

and the high-level routines could also be implemented into the application

software directly.

4.2.2 Sampling Speed with Irinos

For all Irinos systems, the real-time capability is independent of the number

of probes (measurement channels), since each Irinos box has its own

measurement value buffer. With the

· Irinos IR, most boxes are able to acquire 20000 samples/s, and with the

· Irinos EC, most boxes are able to acquire 4000 samples/s.

Two quick rules of thumb for 99% of applications are:

· If you limit the sampling speed to 1000 samples/s, there is no need to

think about any details. Or:

· If you limit the sampling speed to 10000 samples/s and if you have a

maximum of 4 Boxes, there is no need to think about any details.

(With the Irinos EC, the max. speed still is 4000 samples/s.)

The sampling period used with the NMX DLL must be an integer multiple of

the minimum sampling period of the system. The following table lists

typical sampling speeds:

Sampling Speed

[samples/s]
Sampling Period Irinos IR Irinos EC

20.000 50 µs OK not supported

10.000 100 µs OK not supported

6.666 150 µs OK not supported

5.000 200 µs OK not supported

4.000 500 µs OK OK

142

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

2.000 500 µs OK OK

1.000
1000 µs = 1
ms

OK OK

500
2000 µs = 2
ms

OK OK

200
5000 µs = 5
ms

OK OK

100
10000 µs = 10
ms

OK OK

The memory is dimensioned so that the measured values can be buffered

for at least 10 seconds at the maximum sampling rate. If the sampling

rate is lower, this time increases accordingly.

Only the transmission time to the PC depends on the number of channels and

the measuring rate. Since the data transmission to the PC and the PC itself do

not have realtime capabilities, no guaranteed transmission time can be

guaranteed. However, typically a transmission rate can be achieved, which is

almost constant and thus close to realtime.

For time-limited real-time measurement, the transmission rate is relevant for

calculating the typical time between "start of sampling" and "all

measurement data available on the PC". This time is called "transfer time".

For endless measurement, the transmission rate is relevant for determining

the maximum possible sampling speed.

Typically achievable transmission rates are listed in the following table:

Irinos System

Typical transmission

rate R
TR-32

 with 32 Bit

measurement

channels,

e.g. Incremental

probes

Typical transmission

rate R
TR-16

 with 16 Bit

measurement

channels

e.g. Inductive probes

143

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Irinos IR
approx. 200.000
values/s

approx. 400.000
values/s

Irinos EC
approx. 80.000
values/s

approx. 160.000
values/s

As shown in the table, the transmission rate also depends on the native data

type(s) of the measurement channels used. If mixed types of measurement

channels are used, then the typical transmission rate will be in between the

given values.

Some examples are provided here to give a quick guidance. For a detailed

examination, calculation formulas are given below.

Examples for Transfer Time for a time-limited sampling with a duration

(Start -> Stop) of 10 seconds:

Configuration Irinos IR Irinos EC

32 Inductive
Probes
(16 Bit)

10000 samples/s:

10s + 0s = 10s

-> Similar to realtime

4000 samples/s:

10s + 0s = 10s

-> Similar to realtime

32 Incremental
Probes
(32 Bit)

10000 samples/s:

10s + 6s = 16s

-> approximately 6
seconds after stop,
the transfer is
finished

4000 samples/s:

16s + 6s = 16s

-> approximately 6
seconds after stop,
the transfer is
finished

32 Inductive
Probes (16 Bit) + 4
Incremental
Probes (32 Bit)

10000 samples/s:

10s + 0s = 10s

-> Similar to realtime

4000 samples/s:

10s + 0s = 10s

-> Similar to realtime

144

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

16 Inductive
Probes (16 Bit) +
16 Incremental
Probes (32 Bit)

10000 samples/s:

10s + 2s = 12s

-> approximately 2
seconds after stop,
the transfer is
finished

4000 samples/s:

10s + 2s = 12s

-> approximately 2
seconds after stop,
the transfer is
finished

Examples for maximum sampling speed for endless sampling:

Configuration Irinos IR Irinos EC

32 Inductive
Probes
(16 Bit)

Theoretical
maximum: 12500
samples/s

Next possible value:
10000 samples/s

6666 samples/s

Theoretical
maximum: 5000
samples/s

Next possible value:
4000 samples/s

2000 samples/s

32 Incremental
Probes
(32 Bit)

Theoretical
maximum: 6250
samples/s

Next possible value:
5000 samples/s

4000 samples/s

Theoretical
maximum: 2500
samples/s

Next possible value:
2000 samples/s

1000 samples/s

32 Inductive
Probes (16 Bit) + 4
Incremental
Probes (32 Bit)

Theoretical
maximum: 10000
samples/s

Next possible value:
10000 samples/s

6666 samples/s

Theoretical
maximum: 4000
samples/s

Next possible value:
4000 samples/s

2000 samples/s

145

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

16 Inductive
Probes (16 Bit) +
16 Incremental
Probes (32 Bit)

Theoretical
maximum: 8333
samples/s

Next possible value:
6666 samples/s

5000 samples/s

Theoretical
maximum: 3333
samples/s

Next possible value:
2000 samples/s

2000 samples/s

64 Inductive
Probes
(16 Bit)

Theoretical
maximum: 6250
samples/s

Next possible value:
5000 samples/s

4000 samples/s

Theoretical
maximum: 2500
samples/s

Next possible value:
2000 samples/s

1000 samples/s

Formulas

Following a few formulas are provided to get estimations. These formulas

use the following variables:

Variable Meaning Unit

t
Transfer

Transfer Time:
Time between "Start
of sampling" and "All
measurement data
available on the PC"

s -> seconds

t
Sampling

Sampling Time:
Time between
"Start" and "Stop" of
sampling

s -> seconds

146

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

vs
Max

Maximum sampling
speed for endless
sampling

values / s / channel

--> same as:
samples / s

R
TR

Typical Transmission
rate, see table
above.

values / s

N
MCH

Number of
measurement
channels used

channels

N
MCH-16

Number of 16 bit
measurement
channels used

channels

N
MCH-32

Number of 32 bit
measurement
channels used

channels

N
Samples

Total number of
samples to be
recorded

values / channel

Each formula is provided in a simplified form and in a detailed form.

The simplified form is sufficient for most applications as a quick check.

The detailed form is especially used, when very high performance is required.

Required value Simplified Detailed

Transfer time for
time-limited
sampling

(Time between "start
of sampling" and "all
measurement data is
available at the PC")

Formula 1:

Note: t
Transfer

t
Sampling

Formula 2:

Note: t
Transfer

t
Sampling

147

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Max. sampling
speed for endless
sampling

Formula 3: Formula 4:

Example for Formula 1:

In the measurement application with the Irinos IR, 21 inductive probes, 4 analogue
channels and 3 incremental probes/encoders are used. The measurement has a duration
of 5 seconds at 10000 samples/s.

N
MCH

 = 21 + 4 + 3 = 28 channels

NSamples = 5s * 10000 values/s/channel = 50000 values/channel.

R
TR-32

 = 200000 values/s

--> 2 seconds after stop of sampling, all data is available.

Example for Formula 2:

In the measurement application with the Irinos IR, 21 inductive probes, 4 analogue
channels and 3 incremental probes/encoders are used. The measurement has a duration
of 5 seconds at 10000 samples/s.

N
MCH-16

 = 21 + 4 = 25 channels

N
MCH-32

 = 3 channels

NSamples = 5s * 10000 values/s/channel = 50000 values/channel.

R
TR-16

 = 400000 values/s

--> Since t
Transfer

 < t
Sampling

, all data is available immediately after stop of

sampling.

Example for Formula 3:

In the measurement application with the Irinos EC, 11 inductive probes + 1

incremental encoder are used.

148

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

N
MCH

 = 11 + 1 = 12 channels

R
TR-32

 = 80000 values/s

--> The maximum speed of the Irinos EC, which is 4000 samples/s, can be used.

Example for Formula 4:

In the measurement application with the Irinos IR, 31 inductive probes + 6

incremental encoders are used.

N
MCH-16

 = 31 channels

N
MCH-32

 = 6 channels

--> 5000 samples/s can be used as maximum sample rate.

4.2.3 Data Types

The NMX DLL provides all

· measurement values as signed 32 bit values ("signed long") and all

· digital in-/outputs as unsigned 8 bit values ("unsigned char").

The native format of the measurement values can be different. For inductive

probes the native format is for example signed 16 bit ("signed short"). To

simplify the DLL interface, this native format is converted / "casted" to the

common 32 Bit format within the DLL.

Example: An inductive probe has the value -9152, which is 0xDC40. This 16 Bit

value is then converted to the 32 Bit value 0xFFFFDC40, which is also -9152.

If required, the native data type of a measurement channel can be retrieved

from the NMX DLL using the function NMX_GetChannelInfo_1 . However, in

most cases the conversion factor to a physical unit is of interest and not the

data type.

190

149

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Digital in-/outputs are always transferred byte-wise, which means that each 8

in-/outputs are represented by 1 byte.

Example: A system has 32 digital inputs. These are represented by 32 / 8 = 4

input bytes, whereas

· Byte 0 contains the inputs 1..8

· Byte 1 contains the inputs 9..16

· etc.

4.2.4 Technical Background

The NMX DLL uses the Windows API functions for IP based communication,

thread management and timing.

Inside the NMX DLL separate threads are running, which control the

communication and the notification . The NMX DLL functions provide data

to these threads and vice versa.

Some of the threads use normal thread priority while others use highest

thread priority.

Please note: Even though the NMX DLL is multi-threaded, its function

calls are not thread safe against each other. This means that all DLL

functions must be called from within the same thread!

Communication to the measurement system is based on UDP/IPV4. The DLL

automatically retransmits a data packet, if it has been lost. A direct ethernet

connection between the measurement system and the PC is advised.

Complex network structures, e.g. routing, tunneling, VPN, etc. are not

supported due to timing efficiency. If you use these, you do it on your own

risk.

The NMX DLL has been designed in C++ (VS2017) and uses the "stdcall"

calling convention. A C based header file is provided.

Example applications for various programming environments are provided. It

is good practice to start with one of these.

4.2.5 Limitations

The NMX DLL has several limitations. These have been selected such that in

almost all cases they are of theoretical nature.

Note that your measurement system may have limitations below those

of the NMX DLL.

176

150

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

The NMX DLL limitations are:

· Max. number of measurement boxes: 64

· Max. number of measurement channels: 256

· Max. number of sampling elements: 512

· Max. number of handles (-> simultaneous connections): 8

4.2.6 Hardware Requirements

The NMX DLL has no special hardware requirements.

Practical tests have shown that the CPU load is almost negligible and all of

today's CPUs are sufficient.

To give an example: using the Visual C++ demo application, a 2 weeks

sampling at 1kSample/s using 64 measurement channels consumed a total

CPU time of 22 seconds (CPU i5-6300U). Usually the CPU performance

required for the measurement application is far higher than for the DLL.

The memory usage mainly depends on the buffer, which is required for

sampling. This means, it is defined by you (see

NMX_Sampling_PrepareTime_1). For typical applications, the memory

consumption is very low (< 10 MBytes).

4.2.7 Versions

The version number of the NMX DLL consists of 4 parts, which are separated

by a dot, e.g. V1.3.0.12. The meaning of the parts is:

218

151

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Part of the version number Meaning

1. Part, in the example: 1 "Major" version number

It is incremented, if the NMX DLL is

completely redesigned (-> happens

seldom).

2. Part, in the example: 3 "Minor" version number

It is incremented, if new functionality

has been implemented.

3. Part, in the example: 0 "Patch"

It in incremented, if one ore more

bugs have been fixed.

4. Part, in the example: 12 "Build"

Internal number for revision

identification.

To ensure a long-term backward compatibility, newer versions may have

additional functionality, but existing functionality remains unchanged (except

bug-fixes). Therefore each function call has a separate suffix at its end: _1

An example is NMX_StaticGet32_1.

If a newer version of an existing function is implemented, a copy of the

existing function call is made an the suffix is incremented. Following the

example, a newer version would be named NMX_StaticGet32_2, whereas the

existing function call remains unchanged.

It is strongly recommended to check for a minimum DLL version after

startup of your measurement software (especially the Major and Minor

part). Use NMX_GetDllVersion_1 for this purpose.164

152

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

The NMX DLL may support functionality, which is not supported by the

measurement system ("device"). This can be either since it is limited in

functionality or since its firmware version is outdated. The function call will

then return with the return code "NST_REQ_VERS_NOSUPPORT".

4.2.8 INI-File

Via an INI-File NmxDLL.ini, the behaviour of the NMX DLL can be modified.

Currently the following modifications are possible:

· Enable writing a log file NmxDLL.log.

· Change timing settings.

This INI-File should only be used if advised by the support.

4.2.9 .NET Wrapper DLL

For .Net based environments, like for example C# or VB.Net, a wrapper DLL is

available (NmxDotNet.dll).

This DLL provides managed .Net function calls for your application. Internally,

it converts between the managed .Net-World and the unmanaged native

code of the NMX DLL:

In addition, the .Net DLL is much more convenient to use. There is for

example no need to declare any function prototypes, since these are already

embedded into the DLL.

Please note:

· The wrapper DLL uses the standard NMX DLL. Therefore both DLLs

(NmxDLL.dll and NmxDotNet.dll) must be placed in the same folder.

· Since the wrapper DLL calls native code, it is "unsafe code" from the .Net

perspective.

By default, unsafe code is not allowed in .Net applications. This setting

160

153

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

must be changed in the "Build" section of your project properties, to allow

unsafe code.

· The API of the wrapper DLL is slightly different to the native DLLs API. For

example arrays are handled differently. However, the basic concept is the

same.

4.3 API (programming interface)

4.3.1 Function calls overview

The following table provides a list of all function calls supported by the NMX

DLL.

Don't be frightened by the long list of functions. Small measurement

applications may need just a few of these function calls. See the HowTo

"Small Measurement Application " in this manual.

There is quite a simple rule: the more sophisticated your measurement

application is, the more function calls you will need.

Categ

ory
Function call

Descripti

on

Min.

DLL

versio

n

Miscell

aneou

s

NMX_GetDllVersion_1

Get

version

of the

NMX

DLL.

V1.0.0.

0

NMX_SystemReset_1

Reset the

device

via

Software.

V1.0.0.

0

Conne

cting /

Discon

nectin

g

NMX_DeviceIPv4Open_1

Establish

a

connecti

on to the

device

via IPV4.

V1.0.0.

0

NMX_DeviceClose_1

Close a

connecti

on to a

device.

V1.0.0.

0

239

164

165

173

175

154

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Categ

ory
Function call

Descripti

on

Min.

DLL

versio

n

Notific

ations

NMX_RegisterMessage_1

Register

a

notificati

on

message.

V1.0.0.

0

NMX_RegisterCallback_1

Register

a

notificati

on

callback.

V1.0.0.

0

Get

device

inform

ation

NMX_GetBoxCount_1

Get

number

of

measure

ment

boxes

available

.

V1.0.0.

0

NMX_GetBoxInfo_1

Get

informati

on about

a

measure

ment

box

(digital

type

plate).

V1.0.0.

0

NMX_UpdateChannelInfo_1

Re-Read

measure

ment

channel

informati

on.

V1.0.0.

0

NMX_GetChannelCount_1
Get

number

V1.0.0.

0

178

180

183

184

188

189

155

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Categ

ory
Function call

Descripti

on

Min.

DLL

versio

n

of

measure

ment

channels

available

.

NMX_GetChannelInfo_1

Get

informati

on about

measure

ment

channel

(digital

type

plate).

V1.0.0.

0

NMX_GetDigitalInputInfo_1

Get

informati

on about

digital

input

byte.

V1.0.0.

0

NMX_GetDigitalOutputInfo_1

Get

informati

on about

digital

output

byte.

V1.0.0.

0

Static

measu

remen

t

(Non-

Realti

me)

NMX_StaticGet32_1

Read

· static

measur

ement

values,

· digital

input

data,

· hardwa

re

V1.0.0.

0

190

195

197

198

156

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Categ

ory
Function call

Descripti

on

Min.

DLL

versio

n

status

and

· current

box

events.

NMX_StaticSetMedianDepth_1

Set

median

filter for

static

measure

ment

values.

V1.0.0.

0

NMX_SetOutputs_1

Set

digital

outputs.

V1.0.0.

0

NMX_DisableOutputUpdate_1

Disable

updating

digital

outputs.

V1.0.0.

0

NMX_DigitalIoConfig_1

Configur

e digital

I/O.

V1.0.0.

0

NMX_DigitalOutputsGetState_1

Get

current

state of

digital

outputs.

V1.0.0.

0

Sampli

ng

LowLe

vel

(Time-

Trigge

red

Realti

me

NMX_Sampling_GetMaxSpeed_1

Get

maximu

m

sampling

speed.

V1.0.0.

0

204

205

206

207

208

209

157

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Categ

ory
Function call

Descripti

on

Min.

DLL

versio

n

Measu

remen

t)

NMX_Sampling_Reset_1

Reset

sampling

.

V1.0.0.

0

NMX_Sampling_AddChannelsAll_1

Add all

measure

ment

channels

to the list

of

sampling

elements

.

V1.0.0.

0

NMX_Sampling_AddChannel_1

Add a

single

measure

ment

channel

to the list

of

sampling

elements

.

V1.0.0.

0

NMX_Sampling_AddDigiInAll_1

Add all

digital

input

bytes to

the list of

sampling

elements

.

V1.0.0.

0

NMX_Sampling_AddDigiInByte_1

Add a

single

digital

input

byte to

the list of

sampling

V1.0.0.

0

210

211

212

214

215

158

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Categ

ory
Function call

Descripti

on

Min.

DLL

versio

n

elements

.

NMX_Sampling_AddDigiOutAll_1

Add all

digital

output

bytes to

the list of

sampling

elements

.

V1.0.0.

0

NMX_Sampling_AddDigiOutByte_1

Add a

single

digital

output

byte to

the list of

sampling

elements

.

V1.0.0.

0

NMX_Sampling_PrepareTime_1

Prepare

sampling

.

V1.0.0.

0

NMX_Sampling_Start_1

Start

sampling

.

V1.0.0.

0

NMX_Sampling_Stop_1

Stop

sampling

.

V1.0.0.

0

NMX_Sampling_ReadColumn32_1

Read

sampled

data

"column-

wise".

V1.0.0.

0

NMX_Sampling_ReadRow32_1
Read

sampled

V1.0.0.

0

216

217

218

220

221

221

224

159

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Categ

ory
Function call

Descripti

on

Min.

DLL

versio

n

data

"row-

wise".

NMX_Sampling_GetStatus_1

Get

current

sampling

status.

V1.0.0.

0

Sampli

ng

HighL

evel

(Appli

cation

specifi

c

Realti

me

Measu

remen

t)

NMX_Sampling_PrepareCustomTFT_1

Prepare

applicati

on

specific

sampling

of the

type

"Trigger

+ Filter +

Tail".

V1.1.0.

11

Diagn

ostics

NMX_DiagClearEvent_1

Clear

event at

Box.

V1.0.0.

0

NMX_DiagGetEventText_1

Get text

describin

g the

event.

V1.0.0.

0

NMX_SetDateTime_1

Set

current

date &

time.

V1.0.0.

0

226

232

235

236

238

160

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

4.3.2 Function Return Codes (NMX_STATUS)

The function calls of the NMX DLL almost all have the same return value of

the type NMX_STATUS. Most of the return values will rarely occur. The most

common ones are shown in bold in the following table.

Note for the .Net DLL : In the .Net DLL, the return values are represented by

the enum type NMX_MSTATUS instead by a binary value. Therefore

NST_SUCCESS is for example NMX_MSTATUS.SUCCESS.

The return values are defined as follows:

152

161

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Return value Hex representation Description

Possible

reasons

(excerpt)

NST_SUCCES

S
0x00000000

Everything

OK.

NST_HANDLE

_INVALID
0xF0000000

Invalid

handle.

· Connection

has not been

established

yet.

· Connection

has already

been closed.

NST_HANDLE

_TOO_MANY
0xF0000001

Too many

handles exists.

Too many

connections

have been

opened. The

limit is 8.

NST_CONNE

CT_OPEN_FAI

LED

0xF0000010

Failed

connecting

to a device.

· Device is not

connected to

the PC.

· Network

settings (IP

address &

Port

numbers) are

invalid.

NST_NOT_CO

NNECTED
0xF0000011

No

connection

established.

NST_NOT_AV

AILABLE
0xF000001F

The requested

data is not

available.

No connection

established or

invalid data

received from

the device.

NST_SEND_SI

ZE_TOO_LARG

E

0xF0000020
Too much

data to send.

NST_DX_TIM

EOUT_1
0xF0000021

A data

exchange

timeout

occurred.

· The network

connection

has been

interrupted

shortly or

permanently.

· PC timing is

too slow, e.g.

due to an

application

causing 100%

CPU load or a

virtual

machine is

used.

NST_DX_TIM

EOUT_2
0xF0000022

NST_DX_TIM

EOUT_COMM

ON

0xF0000023

NST_INV_RES

P
0xF0000030

Response

from the

device is

invalid.

· Device

firmware is

outdated.

· Device type

not supported.

NST_RESP_ER

R
0xF0000031

Response

from the

device

contained an

error code.

· Device

firmware is

outdated.

· Newer DLL

version

available.

NST_REQ_VER

S_NOSUPPOR

T

0xF0000032

Request not

supported by

the device.

· Device does

not support

this

functionality.

· Device

firmware is

outdated.

NST_BOXNO_

INVALID
0xF0000040

The box

number

provided in

the

parameters

list is invalid.

Invalid box

number used.

Box numbering

starts at 0. E.g.

5 Boxes -> Box

numbers 0..4.

NST_CHANN

EL_INVALID
0xF0000041

The

measuremen

t channel

number

provided in

the

parameters

list is invalid.

Invalid

measurement

channel

number used.

Channel

numbering

starts at 0. E.g.

8 Channels ->

Channel

numbers 0..7.

NST_DIGIIN_I

NVALID
0xF0000042

The digital

I/O byte

number is

invalid.

Invalid I/O byte

number used.

Byte

numbering

starts at 0. E.g.

2 I/O Bytes ->

Byte numbers

0..1.

Note that I/Os

are counted

byte-wise. E.g.

16 digital

inputs are 2

bytes.

NST_DIGIOU

T_INVALID
0xF0000043

NST_STRING_I

NVALID
0xF0000048 String invalid

The string

provided in the

parameters is

invalid, e.g. too

short.

NST_DATA_T

OOLARGE
0xF0000048

Data is too

large.

· Data provided

in the

parameters

list is too

large.

· Internal DLL

error. Check

for newer DLL

version.

NST_NOTIFIC

ATION_UNKN

OWN

0xF0000050

Unknown

notification

type.

Check for valid

notification

types .

NST_SAMPLIN

G_TOOMANY_

ELEMENTS

0xF0000100

Too many

sampling

elements

defined.

Too many

sampling

elements have

been added.

See

limitations .

NST_SAMPLIN

G_GUID_INVA

LID

0xF0000101

The internal

sampling

GUID is

invalid.

Sampling

configured in

parallel by other

software or

instance.

NST_SAMPLI

NG_NO_ELE

MENTS

0xF0000102

No sampling

elements

have been

added.

No sampling

elements have

been added

prior to

preparing /

starting the

sampling.

NST_SAMPLI

NG_DOUBLE_

ELEMENT

0xF0000103

Sampling

element has

already been

added.

One or more of

the sampling

element, which

shall be added,

is already in the

sampling

element list.

Each element

must only be

added once.

NST_SAMPLI

NG_INVALID

_CHANNELN

O

0xF0000104

The channel

number to be

added is

invalid.

Invalid

measurement

channel

number used.

Channel

numbering

starts at 0. E.g.

8 Channels ->

Channel

numbers 0..7.

NST_SAMPLI

NG_INVALID

_ELEMENTN

O

0xF0000105

The sampling

element

number is

invalid.

Not enough

sampling

elements have

been added

before.

Element

numbering

starts at 0.

NST_SAMPLI

NG_ALREAD

Y_STARTED

0xF0000106

Sampling has

already been

started.

Sampling has

already been

prepared /

started before.

Stop and reset

current

sampling.

NST_SAMPLIN

G_ELEMENTS_

NOACCEPT

0xF0000120

The list of

sampling

elements has

not been

accepted by

the device.

Measurement

system setup

has been

changed

without

reconnecting

manually (e.g.

number of

measurement

channels is

different).

NST_SAMPLI

NG_INVALID

_PERIOD

0xF0000121

Invalid

sampling

period.

The sampling

period

requested is

not supported

by the

measurement

system. The

maximum

speed can be

requested

from the

device. See also

users manual.

NST_SAMPLIN

G_INVALID_M

AXSAMPLES

0xF0000122

Invalid

maximum

number of

measurement

s samples.

· Sampling has

been

prepared with

0 samples.

· Error from

device.

NST_SAMPLIN

G_START_FAIL

ED

0xF0000130

Starting

sampling

failed.

Error code from

device.

NST_SAMPLIN

G_START_CO

NFIG

0xF0000131

Sampling

configuration

invalid.

· Sampling has

not been

prepared.

· Device has

been reset.

NST_SAMPLI

NG_START_N

OTPREPARE

D

0xF0000132

Sampling has

not been

prepared.

Sampling has

not been

prepared.

NST_SAMPLIN

G_NO_DATA_

AVAILABLE

0xF0000140

No data is

available for

readout.

No new

sampling data

available.

NST_SAMPLIN

G_READ_DAT

A_ERROR

0xF0000141

Error reading

sampling

data.

NST_SAMPLIN

G_NOTENOU

GH_MEMORY

0xF00001F8

Not enough

memory for

allocating

sampling

buffers.

· Buffer size too

large.

· Heap memory

too small.

NST_SAMPLIN

G_INTERNAL
0xF00001FF

Internal

sampling

error.

NST_HLSAMP

LING_INVALID

_FILTPERIOD

0xF0000200
Invalid filter

period.

NST_INTERNA

L_SEQ
0xF0001000

Internal

sequence

error.

NST_INVALID_

EVENT
0xF0001001

Invalid

internal event.

176

149

209

162

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

4.3.3 Connection Handle

The NMX DLL allows having multiple connections to different devices, even

though in most applications one connection to one device is used.

In order to distinguish between multiple connections, a unique handle is

assigned for each of them by the NMX DLL.

Technically spoken, a handle is nothing else than a pointer to an address

space managed by the NMX DLL. This is a common programming technique.

The pointer itself resides outside the NMX DLL in the user application. It is

assigned if a connection has been established successfully (see

NMX_DeviceIPv4Open_1). It is then used in almost every DLL function, to

identify the relevant connection. It is deleted by closing the connection (see

NMX_DeviceClose_1).

The Handle has the following type definition (C-Code):

typedef void* NMX_PHANDLE;

For each connection a handle must be declared. In case only one connection

is used, the declaration looks as follows:

NMX_PHANDLE pHandle = NULL;

Note for the .Net DLL : Using the .Net DLL, the handle uses the type

System::IntPtr. The basic concept is the same. In case only one connection

is used, the declaration in C# looks as follows:

IntPtr pDevice = IntPtr.Zero;

Further information, if you use multiple connections / handles:

Inside the NMX DLL, each connection / handle has its own memory and its

own communication tasks. Talking in object orientated programming, a

separate object is created for each handle.

If notifications are used, these must be registered for each handle

separately.

173

175

152

176

163

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

4.3.4 Trigger Modes

Certain sampling functions allow using a digital input for triggering. The

following Trigger-Modes are implemented.

Please note that not all trigger modes are supported by every function.

Trigger Mode 1 = "Edge"

Using the edge trigger, exactly one sample is stored every time an edge of

the digital input occurs. The following example shows this for "rising edge":

sampling frequency. Otherwise samples could be lost.

Trigger Mode 2 = "Level"

Using the level trigger, measurement values are sampled while the digital

input is high (for polarity "high") or low (for polarity "low"). The following

example shows this for polarity "high":

Trigger Mode 3 = "Edge Start"

Using the trigger "Edge Start", recording of sampled data is stored after the

first edge of the digital input. Any further edges of the digital input have no

effect. The following example shows this for "rising edge":

164

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Trigger Mode 4 = "Level Once"

The trigger mode "Level Once" is similar to the "Level Trigger" (Mode 2),

except that sampling is stopped automatically once the trigger condition

becomes inactive. The following example shows this for polarity "high":

4.3.5 Miscellaneous

4.3.5.1 NMX_GetDllVersion_1

This function returns the current version of the NMX DLL.

Definition

void NMX_GetDllVersion_1(

unsigned short* pusMajor,

unsigned short* pusMinor,

unsigned short* pusPatch,

unsigned short* pusBuild);

Parameter

pusMajor

Major version of the NMX DLL.

pusMinor

165

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Minor version of the NMX DLL.

pusPatch

Patch version of the NMX DLL.

pusBuild

Build number of the NMX DLL.

Typical function call (C example)

NMX_GetDllVersion_1(&usMajor, &usMinor, &usPatch, &usBuild);

.Net DLL specific implementation

System::Void GetDllVersion_1(System::UInt16 %pusMajor,
System::UInt16 %pusMinor, System::UInt16 %pusPatch,
System::UInt16 %pusBuild);

Comments

See chapter "Versions " for more information.

4.3.5.2 NMX_SystemReset_1

This function allows restarting the whole measurement system (device). Use

this function only if advised by the support.

Definition

NMX_STATUS NMX_SystemReset_1(

NMX_PHANDLE pHandle,

unsigned long ulDelayMaster,

unsigned long ulDelaySlave);

Parameter

pHandle

152

150

166

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Connection Handle .

ulDelayMaster

Time in ms, until the Master-Box (-> first measurement box) will be

restarted.

ulDelaySlave

Time in ms, until all Slave-Boxes will be restarted.

Typical function call (C example)

NMX_SystemReset_1(pHandle, 2000, 500);

.Net DLL specific implementation

NMX_MSTATUS SystemReset_1(System::IntPtr pHandle,
System::UInt32 ulDelayMaster, System::UInt32 ulDelaySlave);

Comments

The delay for the Master must be longer than the delay for the Slaves. Use

the following values:

ulDelayMaster = 2000;

ulDelaySlave = 500;

The reset command is send to all Slave-Boxes via the Link interface between

the boxes. If the Link interface does not work properly, no slave can be reset.

4.3.5.3 NMX_ChannelSetParameter_1

This function allows changing a channels parameters during operation. The

parameters depend on the measurement channel type. It is used for selected

measurement channels, e.g. for incremental encoders.

Definition

NMX_STATUS NMX_ChannelSetParameter_1(

NMX_PHANDLE pHandle,

162

152

167

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

unsigned long ulChannelNo,

char* pcStringTx, unsigned long ulSizeofTxString,

char* pcStringRx, unsigned long ulMaxSizeofRxString,
unsigned long* pulSizeofRxString);

Parameter

pHandle

Connection Handle .

ulChannelNo

Number of the measurement channel.

The first channel has the number 0.

Having a device with 8 measurement channels, these are numbered 0..7.

pcStringTx

ASCII-encoded string, which shall be send to the device.

ulSizeofTxString

Size of pcStringTx in characters/bytes.

pcStringRx

Buffer for the response-string, which is received from the device.

ulMaxSizeofRxString

Size of the buffer pcStringRx in characters/bytes.

pulSizeofRxString

Length of the response-string, which has been received from the

devices.

Typical function call (C example)

char acStrTx[] = "#0;REFOFF#";
NMX_ChannelSetParameter_1(pHandleNmx, 2, acStrTx,
strlen(acStrTx), acStrRx, sizeof(acStrRx), &ulRxSize);

162

168

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Strings, which can be sent to incremental en-/decoder channels

#{Position};{Reference index on/off}#

Position

· New position value for this measurement channel. This allows

setting the position of the measurement channel.

· * if the position of the measurement channel shall not be

changed. This is required, if only the reference index shall be
turned on or off.

· ~ in order to reset the gain- and offset-control of the

measurement channel. The position value will be reset to 0.
This makes only sense for 1Vpp channels.

Reference index on/off

Permissible parameter values:

· REFON to enable the reference index.

In addition, the statusbit "Refmark" (see HardwareStatus)
will be enabled now, if the reference index is crossed.

· REFOFF to disable the reference index.

If the reference index is enabled, the position of the
measurement channel will be set to 0, if the index is crossed.

Response string from the measurement system / measurement
channel for incremental encoder

#0# Success

#-2# Position parameter in string invalid

#-3# Position parameter in string invalid

#-99# General syntax error of the request string

Response string from the Irinos-System / measurement channel
does not support this opcode

198

169

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

#-98#

Examples for request strings to incremental measurement channels

#-2000;REFOFF#

The current position of the selected measurement channel will be set
to -2000. The reference index will be disabled.

#*;REFON#

The reference index of the selected measurement channel will be
enabled. The position will not be changed.

#~;REFOFF#

The gain- and offset control of the selected measurement channel
will be reset. The position will be set to 0. The reference index will be
disabled.

.Net DLL specific implementation

NMX_MSTATUS ChannelSetParameter_1(System::IntPtr pHandle,
System::UInt32 ulChannelNo, System::String ^%strExchange);

· Since strExchange is a managed string, no additional string length

information must be provided in the function call.

· The string strExchange is send to the device.

On success, the received string will be returned via the same
parameter strExchange.

· Make sure to use only ASCII-characters. The conversion from

unicode to ASCII is made within the wrapper DLL.

Comments for incremental measurement channels

152

170

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

The error flags and the status bit "Refmark" will be cleared (these
can be readout via the hardware status). Exception: This does
not apply, if the character * is used for the parameter "position".

Notes for 1Vpp measurement channels:

If an error is detected at the 1Vpp-inputs, the signal levels of the
incremental encoder are or have been out of specification. After an
error has occurred, it is recommended to reset the gain- and offset-
control by using the character ~ as the position parameter.

After resetting the gain- and offset-control, it takes a few signal
periods until the control has determined the optimal parameters.
During this process, the interpolation accuracy is limited. The
measurement values can be inaccurate (however, no increments
are lost). Further, the signal tolerance is limited during this process.

4.3.5.4 NMX_ChannelSetConfig_1

This function allows changing a channels parameters during operation. The

parameters depend on the measurement channel type. It is used for selected

measurement channels, e.g. for incremental encoders.

Definition

NMX_STATUS NMX_ChannelSetConfig_1(

NMX_PHANDLE pHandle,

unsigned long ulChannelNo,

char* pcStringTx, unsigned long ulSizeofTxString,

char* pcStringRx, unsigned long ulMaxSizeofRxString,
unsigned long* pulSizeofRxString);

Parameter

pHandle

Connection Handle .

ulChannelNo

Number of the measurement channel.

The first channel has the number 0.

Having a device with 8 measurement channels, these are numbered 0..7.

198

162

171

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

pcStringTx

ASCII-encoded string, which shall be send to the device.

ulSizeofTxString

Size of pcStringTx in characters/bytes.

pcStringRx

Buffer for the response-string, which is received from the device.

ulMaxSizeofRxString

Size of the buffer pcStringRx in characters/bytes.

pulSizeofRxString

Length of the response-string, which has been received from the

devices.

Typical function call (C example)

char acStrTx[] = "#1VSS;1#";
NMX_ChannelSetConfig_1(pHandleNmx, 2, acStrTx, strlen(acStrTx),
acStrRx, sizeof(acStrRx), &ulRxSize);

Strings, which can be sent to incremental en-/decoder channels

#{Configuration type};{Store}#

Configuration type

„1VSS“ to change an incremental channel type to 1Vpp.

„TTL“ to change an incremental channel type to TTL / RS422
with 1x-decoding (1 increment = 1 digit).

„TTL4X“ to change an incremental channel type to TTL / RS422
with 4x-decoding (1 increment = 4 digits).

Store

172

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

„0“: The change remains active until the next system restart.

Afterwards the old configuration becomes active again.

„1“: The change applies permanently.

Response string from the measurement system / measurement
channel for incremental encoder

#0# Success

#-2# Position parameter in string invalid

#-3# Position parameter in string invalid

#-99# General syntax error of the request string

Response string from the Irinos-System / measurement channel
does not support this opcode

#-98#

.Net DLL specific implementation

NMX_MSTATUS ChannelSetConfig_1(System::IntPtr pHandle,
System::UInt32 ulChannelNo, System::String ^%strExchange);

· Since strExchange is a managed string, no additional string length

information must be provided in the function call.

· The string strExchange is send to the device.

On success, the received string will be returned via the same
parameter strExchange.

· Make sure to use only ASCII-characters. The conversion from

unicode to ASCII is made within the wrapper DLL.

Comments for incremental measurement channels

After configuration, the position of the incremental input channel is
reset.

152

173

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

By reconfiguring an incremental input channel after start of the
application software, it does not matter how a measurement
channel is pre-configured. This allows a quick replacement of a
measurement Box without manual reconfiguration of the "new"
Box.

4.3.6 Connecting / Disconnecting

A connection to the device must be established before any other function

will work properly (exception: NMX_GetDllVersion_1).

4.3.6.1 NMX_DeviceIPv4Open_1

This function is used to establish a connection to a device (measurement

system) via IPV4.

See also the HowTo -Guide.

Definition

NMX_STATUS NMX_DeviceIPv4Open_1(

unsigned char ucIp3,

unsigned char ucIp2,

unsigned char ucIp1,

unsigned char ucIp0,

unsigned short usPortCmd,

unsigned short usPortData,

NMX_PHANDLE *ppHandle);

Parameter

ucIp3, ucIp2, ucIp1, ucIp0

IP-Address of the device. The factory default address is 192.168.3.99.

For using this address, the parameters are as follows:
ucIp3 = 192;
ucIp2 = 168;
ucIp1 = 3;
ucIp0 = 99;

usPortCmd

Port number for the DLLs communication channel, which is used for

exchanging commands. Use 22517.

164

239

174

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

usPortData

Port number for the DLLs communication channel, which is used for

exchanging data. Use 22516.

ppHandle

If the connection has been established successfully, a connection handle

will be returned via this pointer. Otherwise the handle remains

unchanged.

Typical function call (C example)

NMX_DeviceIPv4Open_1(192, 168, 3, 99, 22517, 22516, &pHandle);

.Net DLL specific implementation

NMX_MSTATUS DeviceIPv4Open_1(

System::Byte ucIp3,

System::Byte ucIp2,

System::Byte ucIp1,

System::Byte ucIp0,

System::UInt16 usPortCmd,

System::UInt16 usPortData,

System::IntPtr %ppHandle);

Comments

· NMX_PHANDLE is a pointer to a handle (type void*). It is required for all

subsequent connection calls.

· It is strongly recommended to read the IP-Address and the Port-Numbers

from an INI-File, XML-File, Registry or something similar. Do not hard code

these.

· If the connection is not established after having integrated this function

into your application, first check the network connection to the device (e.g.

by calling its WebServer or via ping).

· Before closing your application, always ensure that this connection is

closed before via NMX_DeviceClose_1 .

152

175

175

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

· Multiple connections can be established to different devices. In this case a

separate handle is provided for each connection. However, this is very

rarely required. Please read also the chapter about limitations .

4.3.6.2 NMX_DeviceClose_1

This function is used to close a connection to a device (measurement

system).

See also the HowTo -Guide.

Definition

NMX_STATUS NMX_DeviceClose_1(

NMX_PHANDLE *ppHandle);

Parameter

ppHandle

Pointer to Connection Handle .

Typical function call (C example)

NMX_DeviceClose_1(&pHandle);

.Net DLL specific implementation

NMX_MSTATUS DeviceClose_1(System::IntPtr %ppHandle);

Comments

If the connection is not established, nothing happens except that

NST_HANDLE_INVALID is returned.

An established connection must be closed before terminating your

application. It is good practice calling this function in any case before

terminating.

149

241

162

152

176

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

4.3.7 Notifications

Using notifications, the application can be informed about different events.

The use of notifications is recommended, but not required.

The following notifications are available:

177

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Category Notification

Hex

Valu

e

Description

M

i

n

.

D

L

L

v

e

r

s

i

o

n

Connectin

g /

Disconnec

ting

NMXNOTIFY_DISCONNECTED0x00000002

The connection to the device

(measurement system) has been

closed.

Prior to this event the function

NMX_DeviceClose_1 has been

called.

V

1

.

0

.

0

.

0

NMXNOTIFY_FAILURE_DATA_EXCHANGE0x00000003

Permanent failure during data

exchange (e.g. timeout).

A typical reason is a broken network

connection.

V

1

.

0

.

0

.

0

NMXNOTIFY_RECONNECTED0x00000004

The connection has been re-

established automatically.

Prior to this event, the event

NMXNOTIFY_FAILURE_DATA_EXCHAN

GE occurs.

V

1

.

0

.

0

.

0

Static

measure

ment

(Non-

Realtime)

NMXNOTIFY_NEW_STATIC320x00000010
The static data inside the DLL has been

updated.

V

1

.

0

.

0

.

0

Sampling

(Realtime

Measure

ment)

NMXNOTIFY_SAMPLING_NEW_DATA0x00000020New sampled data is available.

V

1

.

0

.

0

.

0

NMXNOTIFY_SAMPLING_FINISHED0x00000021
Sampling is finished. Not all data may

have arrived at the PC yet.

V

1

.

0

.

0

.

0

NMXNOTIFY_SAMPLING_ALL_DATA_RECEIVED0x00000022
Sampling is finished and all data has

arrived at the PC.

V

1

.

0

.

0

.

0

NMXNOTIFY_SAMPLING_ERROR0x00000028An error occurred during sampling.

V

1

.

0

.

0

.

0

NMXNOTIFY_SAMPLING_BUFFER_OVERFLOW0x00000029

Overflow of the DLL-internal buffer for

sampled data. Your application has

not readout the data in time.

Increase readout frequency or increase

buffer size.

V

1

.

0

.

0

.

0

NMXNOTIFY_SAMPLING_TIMEOUT0x0000002A

A timeout occurred during sampling.

This is a general error (multiple root

causes).

V

1

.

0

.

0

.

0

175

178

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

There are two technical ways for receiving notifications:

· Windows Messages, see NMX_RegisterMessage_1 , or

· Callback Functions, see NMX_RegisterCallback_1 .

If technically possible in your application, Messages are recommended. Use

Callbacks, if it is difficult or impossible to read the Windows message queue.

Inside the NMX DLL, notifications are send/called from a separate thread. An

advantage of this is, that the communication thread is not interrupted, if

message or callback handling takes too much time.

Nevertheless it is very important that the notification itself and reading,

processing and displaying data is handled in a separate threads. The

following approach is suggested:

· In case a notification occurs, set a global flag.

· Check this flag cyclically in the same thread, which handles the DLL function

calls. This cyclic check can for example be implemented into a 30ms timer-

event of the GUI.

Further comments:

· All notifications are automatically removed, when a connection is closed.

You will have to re-register them after establishing a new connection.

· It is possible to combine multiple notifications to the same Windows

Message or Callback. Register each of the Notifications, which shall be

combined, using the same Windows Message or Callback Function.

· If you have multiple connections, the notifications must be registered for

each connection separately.

4.3.7.1 NMX_RegisterMessage_1

This function is used to register a notification message at the DLL.

Definition

NMX_STATUS NMX_RegisterMessage_1(

NMX_PHANDLE pHandle,

unsigned long ulNotification,

HWND hWnd,

unsigned long ulMsgCode,

178

180

179

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

WPARAM tWParam,

LPARAM tLParam);

Parameter

pHandle

Connection Handle .

ulNotification

Notification type , e.g. NMXNOTIFY_NEW_STATIC32.

hWnd

Window Handle of the Windows Window, which handles the message

queue.

ulMsgCode

Message number, which must be defined by the application (see also

comment below).

tWParam

The wParam of the Windows message.

tLParam

The lParam of the Windows message.

Typical function call (C example)

NMX_RegisterMessage_1(pHandle, NMXNOTIFY_NEW_STATIC32,
static_cast<HWND>(Handle.ToPointer()), WM_MESSAGE_NEW_STATIC32,
0, 0);

.Net DLL specific implementation

NMX_MSTATUS RegisterMessage_1(

System::IntPtr pHandle,

NMX_NOTIFICATION eNotification,

System::IntPtr hWnd,

162

176

152

180

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

System::UInt32 ulMsgCode,

System::UInt32 tWParam,

System::UInt32 tLParam);

NMX_NOTIFICATION is an enum type, which is defined in the .Net - DLL. The

available notifications are identical to the standard notifications , except

that they don't have a fixed binary representation.

Comments

If hWnd is NULL, a registered message will be cleared.

Message Code (ulMsgCode)

The message-number is defined by your application. Using Visual C++, this

can be done for example as follows:

#define WM_MESSAGE_DISCONNECTED (WM_USER +
NMXNOTIFY_DISCONNECTED)
#define WM_MESSAGE_FAILURE_DATA_EXCHANGE (WM_USER +
NMXNOTIFY_FAILURE_DATA_EXCHANGE)
#define WM_MESSAGE_RECONNECTED (WM_USER +
NMXNOTIFY_RECONNECTED)
#define WM_MESSAGE_NEW_STATIC32 (WM_USER +
NMXNOTIFY_NEW_STATIC32)
#define WM_MESSAGE_SAMPLING_NEWDATA (WM_USER +
NMXNOTIFY_SAMPLING_NEW_DATA)
#define WM_MESSAGE_SAMPLING_ALLRECEIVED (WM_USER +
NMXNOTIFY_SAMPLING_ALL_DATA_RECEIVED)
#define WM_MESSAGE_SAMPLING_FINISHED (WM_USER +
NMXNOTIFY_SAMPLING_FINISHED)
#define WM_MESSAGE_SAMPLING_ERROR (WM_USER +
NMXNOTIFY_SAMPLING_ERROR)
#define WM_MESSAGE_SAMPLING_BUFFER_OVERFLOW (WM_USER +
NMXNOTIFY_SAMPLING_BUFFER_OVERFLOW)
#define WM_MESSAGE_SAMPLING_TIMEOUT (WM_USER +
NMXNOTIFY_SAMPLING_TIMEOUT)

4.3.7.2 NMX_RegisterCallback_1

This function is used to register a notification callback function at the DLL.

Definition

NMX_STATUS NMX_RegisterCallback_1(

176

181

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

NMX_PHANDLE pHandle,

unsigned long ulNotification,

NMX_NOTIFICATION_CALLBACK* pCbFunction,

void* pvContext);

Parameter

pHandle

Connection Handle .

ulNotification

Notification type , e.g. NMXNOTIFY_NEW_STATIC32.

pCbFunction

Pointer to callback function.

pvContext

A caller provided context pointer which is passed unchanged to the

callback function.

Typical function call (C example)

RegisterCallback_1(pHandle, NMXNOTIFY_NEW_STATIC32,
&Callback_NewStatic32, (void*)&ulCallbackContext);

Comments

If pCbFunction is NULL, a registered callback will be cleared.

Callback function

This function is the prototype for a callback notification.

Definition

void NMX_CALLCONV NMX_NOTIFICATION_CALLBACK(IN void*
pvContext);

162

176

182

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Parameter

pvContext

This parameter is the same which was passed to the function

NMX_RegisterCallback_1. The application can store a context

information in this pointer.

.Net DLL specific implementation

NMX_MSTATUS RegisterCallback_1(

System::IntPtr pHandle,

NMX_NOTIFICATION eNotification,

OnNotification^ NotificationDelegate);

NMX_NOTIFICATION is an enum type, which is defined in the .Net - DLL. The

available notifications are identical to the standard notifications , except

that they don't have a fixed binary representation.

In .Net, delegates are used instead of function pointers. The .Net - DLL calls

this delegates in case of a notification.

In C#, an example for a delegate function is:

public void OnNewStaticData(IntPtr pHandle)
{
}

The handle of the calling DLL-instance is provided as a function parameter. If

you have only one instance (= 1 connection to a device), don't care about it.

This is the most common case.

In case you have multiple instances, the handle can be used to distinquish

between multiple connections.

An example for registering the delegate is:

cNmx.RegisterCallback_1(pDevice, NMX_NOTIFICATION.NEW_STATIC32,
OnNewStaticData);

Note: Since the delegate is directly forwarded to the unmanaged DLL, the

.Net wrapper fixes the delagte pointer in the garbage collector (gc.Alloc).

Comments

152

176

183

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

This function is called in a different thread context. The application must

handle the synchronisation.

4.3.8 Get device information

Several functions are available to get information about the measurement

system.

Using this information is optional.

The following is available:

· Information about measurement boxes (digital type plate).

· Information about measurement channels (type information and digital

type plate of probe).

· Information about digital inputs & outputs .

4.3.8.1 NMX_GetBoxCount_1

This function is used to read the number of measurement boxes, which the

device has.

Definition

NMX_STATUS NMX_GetBoxCount_1(

NMX_PHANDLE pHandle,

unsigned long* pulBoxCount);

Parameter

pHandle

Connection Handle .

pulBoxCount

Number of measurement boxes, which the system has.

Typical function call (C example)

NMX_GetBoxCount_1(pHandle, &ulBoxCount);

184

190

195 197

162

184

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

.Net DLL specific implementation

NMX_MSTATUS GetBoxCount_1(System::IntPtr pHandle,
System::UInt32 %pulBoxCount);

Comments

pulBoxCount only returns a value, if the function return code is NST_SUCCESS.

Otherwise the value remains unchanged.

4.3.8.2 NMX_GetBoxInfo_1

This function is used to read information about a measurement box (digital

type plate).

Definition

NMX_STATUS NMX_GetBoxInfo_1(

NMX_PHANDLE pHandle,

unsigned long ulBoxNo,

unsigned long* pulInfoData, unsigned long
ulInfoDataNElements,

unsigned long long* pudMacAddress,

char* pcSerNo, unsigned long ulSizeofSerNo,

char* pcProdCode, unsigned long ulSizeofProdCode,

char* pcOrderNo, unsigned long ulSizeofOrderNo,

char* pcName, unsigned long ulSizeofName);

Parameter

pHandle

Connection Handle .

ulBoxNo

Number of the measurement box, for which the information shall be

provided.

The first measurement box has the number 0.

In a system with 5 measurement boxes, these are numbered 0..4.

152

162

185

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

pulInfoData

Pointer to an array of unsigned 32 Bit values.

To avoid a large amount of function parameters, several information

will be stored in this array.

See below for more information about the array content.

An array size of 32 elements is recommended. Initialize these with 0.

ulInfoDataNElements

Number of elements of the array, to which pulInfoData points.

Example: The array has 32 elements, its size is 128 Bytes. Then:
ulInfoDataNElements = 32;

pudMacAddress

MAC address of the box.

pcSerNo

ASCII based string with serial number of the box. The maximum string

length is 17 characters (16 + Termination).

ulSizeofSerNo

Maximum size of pcSerNo in Bytes/Characters.

pcProdCode

ASCII based string with production code of the box. The maximum

string length is 17 characters (16 + Termination).

ulSizeofProdCode

Maximum size of pcProdCode in Bytes/Characters.

pcOrderNo

ASCII based string with order number of the box. The maximum string

length is 33 characters (32 + Termination).

ulSizeofOrderNo

Maximum size of pcOrderNo in Bytes/Characters.

pcName

186

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

ASCII based string with name of the box. The maximum string length is

129 characters (128 + Termination).

ulSizeofName

Maximum size of pcName in Bytes/Characters.

Typical function call (C example)

NMX_GetBoxInfo_1(pHandle, ulBoxNo, aulInfoData,
sizeof(aulInfoData) / 4, &udMacAddress, acSerNo,
sizeof(acSerNo), acProdCode, sizeof(acProdCode), acOrderNo,
sizeof(acOrderNo), acName, sizeof(acName));

Content of the array pulInfoData

187

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Eleme

nt
Content Description

0 Box number Number of the box.

1 Hardware Version Major

Version of the electronics.

2 Hardware Version Minor

3 Hardware Revision

Compatibility code between the hardware

and the firmware. It ensures that a firmware

update is only allowed if the firmware

version is compatible to the hardware

revision.

4 Firmware Version Major
Firmware version of the box.

The first part of the firmware version is

incremented in case of major changes.

The second part of the firmware version is

incremented in case new functionality has

been implemented.

The third part of the firmware version is

incremented in case one or more bugs were

fixes.

The fourth part of the firmware version is an

internal counter.

5 Firmware Version Minor

6 Firmware Version Patch

7 Firmware Version Build

8 Number of measurement channelsTotal number of measurement channels.

9 Number of 64 Bit measurement channels
Number of 64 Bit measurement channels,

which the box has.

10 Number of 32 Bit measurement channels
Number of 32 Bit measurement channels,

which the box has.

11 Number of 16 Bit measurement channels
Number of 16 Bit measurement channels,

which the box has.

12 Number of 8 Bit measurement channels
Number of 8 Bit measurement channels,

which the box has.

13 Number of digital inputs

Total number of digital input bits.

For data readout:

· The number of digital inputs is always

rounded up to a multiple of 8. If for

example 2 digital inputs are available.

These are rounded up to 8, whereas the

inputs 3-8 are always low.

· Each 8 Bits are combined in 1 Byte.

14 Number of digital outputs

Total number of digital output bits.

For writing data and for data readout:

· The number of digital outputs is always

rounded up to a multiple of 8. If for

example 2 digital outputs are available.

These are rounded up to 8.

· Each 8 Bits are combined in 1 Byte.

15 .. 31 Reserved for future use

188

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

.Net DLL specific implementation

NMX_MSTATUS GetBoxInfo_1(

System::IntPtr pHandle,

System::UInt32 ulBoxNo,

array<System::UInt32>^aulInfoData,

System::UInt64 %pudMacAddress,

System::String ^%strSerial,

System::String ^%strProdCode,

System::String ^%strOrderNo,

System::String ^%strName);

No Length/Sizeof-Parameters are required for the array aulInfoData and the

strings, since this information is not required in a .Net environment.

For aulInfoData a size of 32 elements is recommended. The strings strSerial,

strProdCode, strOrderNo and strName are directly returned as Unicode-

strings. Hence no additional conversion is required.

Comments

It is good practice reading the box count first. Then read the box

information for each box.

The function only returns values, if the function return code is NST_SUCCESS.

Otherwise the values remain unchanged.

4.3.8.3 NMX_UpdateChannelInfo_1

This function forces the NMX DLL to re-read measurement channel

information..

Definition

NMX_STATUS NMX_UpdateChannelInfo_1(

NMX_PHANDLE pHandle);

Parameter

pHandle

Connection Handle .

152

183

162

189

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Typical function call (C example)

NMX_UpdateChannelInfo_1(pHandle);

.Net DLL specific implementation

NMX_MSTATUS UpdateChannelInfo_1(System::IntPtr pHandle);

Comments

The NMX DLL reads the channel information from the device once after

connecting. In case the information at the device side changes afterwards,

e.g. due to connecting a different probe, the data within the NMX DLL is

outdated.

Call this function to update this data.

4.3.8.4 NMX_GetChannelCount_1

This function is used to read the number of measurement channels and the

number of digital in-/outputs, which the device has.

Definition

NMX_STATUS NMX_GetChannelCount_1(

NMX_PHANDLE pHandle,

unsigned long* pulChannelCount,

unsigned long* pulNDigitalInputBytes,

unsigned long* pulNDigitalOutputBytes);

Parameter

pHandle

Connection Handle .

pulChannelCount

Number of measurement channels, which the system has.

152

162

190

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

pulNDigitalInputBytes

Number of digital input bytes, which the system has.

(= Number of digital inputs / 8)

pulNDigitalOutputBytes

Number of digital output bytes, which the system has.

(= Number of digital outputs / 8)

Typical function call (C example)

NMX_GetChannelCount_1(pHandle, &ulChannelCount,
&ulNDigiInBytes, &ulNDigiOutBytes);

.Net DLL specific implementation

NMX_MSTATUS GetChannelCount_1(

System::IntPtr pHandle,

System::UInt32 %pulChannelCount,

System::UInt32 %pulNDigitalInputBytes,

System::UInt32 %pulNDigitalOutputBytes);

Comments

The function only returns values, if the function return code is NST_SUCCESS.

Otherwise the values remain unchanged.

4.3.8.5 NMX_GetChannelInfo_1

This function is used to read information about a measurement channel. If

supported by the probe, additional probe information is provided (digital

probe type plate).

Definition

NMX_STATUS NMX_GetChannelInfo_1(

NMX_PHANDLE pHandle,

unsigned long ulChannelNo,

unsigned long* pulChannelType,

unsigned long* pulNDigits,

unsigned long* pulBoxNo,

152

191

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

unsigned long* pulReserved,

unsigned long* pulBoxChannelNo,

signed long* pslRawDataType,

signed long* pslFactNumerator,

signed long* pslFactDenominator,

float* pflFactDigitsToUnit,

char* pcUnit, unsigned long ulSizeofUnit,

char* pcOrderNo, unsigned long ulSizeofOrderNo,

char* pcSerialNo, unsigned long ulSizeofSerialNo);

Parameter

pHandle

Connection Handle .

ulChannelNo

Number of the measurement channel.

The first channel has the number 0.

Having a device with 8 measurement channels, these are numbered 0..7.

pulChannelType

Measurement channel type. See below for a list of channel types.

pulNDigits

Recommended max. number of decimal places for the measurement

value, converted to its unit.

E.g. pulNDigits = 2 --> 54.17µm

pulBoxNo

Number of the Box, where the measurement channel is located.

pulReserved

Reserved for future use.

pulBoxChannelNo

162

192

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Number of the channel within its measurement box.

Numbering starts at 1 with each Box.

Example: In a system with 2 Boxes à 8 Channels, Channel number 11 is

the 4th channel of the second box. Thus the value 4 is returned.

pslRawDataType

Data type, in which the measurement data is acquired.

0 = Unknown (DTRAW_UNKNOWN)

1 = signed 8 Bit (DTRAW_SINT08)

2 = signed 16 Bit (DTRAW_SINT16)

4 = signed 32 Bit (DTRAW_SINT32)

8 = signed 64 Bit (DTRAW_SINT64)

See the data types chapter for more information.

pslFactNumerator

Numerator of the factor, which is used for converting the digit value

into its physical unit.

For some channel types, the physical unit is unknown by the device.

Then this value is 1.

For some channel types, e.g. inductive probes, this is also the maximum

stroke, which the probe has.

pslFactDenominator

Denominator of the factor, which is used for converting the digit value

into its physical unit.

For some channel types, the physical unit is unknown by the device.

Then this value is 1.

pflFactDigitsToUnit

= pslFactNumerator / pslFactDenominator.

Floating point representation of the factor, which is used for converting

the digit value into its physical unit.

(ANSI/IEEE Std 754-1985; IEC-60559:1989: single precision 32 Bit)

pcUnit

ASCII based string with the channels physical unit (or "Digits" if the unit

is unknown). The maximum string length is 9 characters (8 +

Termination).

148

193

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

ulSizeofUnit

Maximum size of pcUnit in Bytes/Characters.

pcOrderNo

ASCII based string with the probe/sensors order number, if available.

The maximum string length is 17 characters (16 + Termination).

ulSizeofOrderNo

Maximum size of pcOrderNo in Bytes/Characters.

pcSerialNo

ASCII based string with the probe/sensors serial number, if available.

The maximum string length is 17 characters (16 + Termination).

ulSizeofSerialNo

Maximum size of pcSerialNo in Bytes/Characters.

Typical function call (C example)

NMX_GetChannelInfo_1(pHandle, ulChannel, &ulChannelType,
&ulNDigits, &ulBoxNo, NULL, &ulBoxChannelNo, &slRawDataType,
&slFactNumerator, &slFactDenominator, &flFactDigitsToUnit,
acUnit, sizeof(acUnit), acOrderNo, sizeof(acOrderNo),
acSerialNo, sizeof(acSerialNo));

Channel types

The channel type allows identifying the channel and/or probe type. The list is

constantly expanded. Currently the following types are supported:

194

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Type
Hex

value
Description

CHANNEL_TYPE_UNKNOWN0x0000 No channel type available

CHANNEL_TYPE_TESA20000x0100

Tesa HalfBridge or compatible, 13 kHz,

3Veff, Default Stroke: ±2mm at

73.75mV/V/mm

CHANNEL_TYPE_TESA2000_LIN0x0101
Tesa HalfBridge or compatible, 13 kHz,

3Veff, Linearized, Max Stroke ±2mm

CHANNEL_TYPE_TESA3000_LIN0x0103
Tesa HalfBridge or compatible, 13 kHz,

3Veff, Linearized, Max. Stroke ±3mm

CHANNEL_TYPE_TESA5000_LIN0x0105
Tesa HalfBridge or compatible, 13 kHz,

3Veff, Linearized, Max. Stroke ±5mm

CHANNEL_TYPE_IET2000x0110
Knäbel IET, 50 kHz, 1.5Veff, Default Stroke:

±200µm

CHANNEL_TYPE_SOLVDT10000x0120
Solartron LVDT or compatible, 5 kHz, 3Veff,

Default Stroke: ±1mm at 200mV/V/mm

CHANNEL_TYPE_SOLVDT100E1M0x0121 Solartron customized type.

CHANNEL_TYPE_FEINP10000x0130
Feinprüf / Mahr, 20 kHz, 3Veff, Default

Stroke: ±1mm

CHANNEL_TYPE_MARPLVDT0x0140 Marposs LVDT, Default Stroke: ±1mm

CHANNEL_TYPE_INCTTL0x0200 Incremental Encoder TTL/RS422

CHANNEL_TYPE_INC1VSS0x0210 Incremental Encoder 1Vpp

CHANNEL_TYPE_AIND100x0300 Analogue Input ±10V Differential

CHANNEL_TYPE_TEMPKC0x0400 Thermocouple, K-Type

CHANNEL_TYPE_LASER0x0500 Laser-Sensor (Sub-Types available).

.Net DLL specific implementation

NMX_MSTATUS GetChannelInfo_1(

152

195

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

System::IntPtr pHandle,

System::UInt32 ulChannelNo,

System::UInt32 %pulChannelType,

System::UInt32 %pulNDigits,

System::UInt32 %pulBoxNo,

System::UInt32 %pulReserved,

System::UInt32 %pulBoxChannelNo,

System::Int32 %pslRawDataType,

System::Int32 %pslFactNumerator,

System::Int32 %pslFactDenominator,

System::Single %pflFactDigitsToUnit,

System::String ^%strUnit,

System::String ^%strOrderNo,

System::String ^%strSerNo);

No Length/Sizeof-Parameters are required for the strings, since this

information is not required in a .Net environment. They are directly returned

as Unicode-strings. Hence no additional conversion is required.

Comments

It is good practice reading the channel count first. Then read the channel

information for each channel.

The function only returns values, if the function return code is NST_SUCCESS.

Otherwise the values remain unchanged.

4.3.8.6 NMX_GetDigitalInputInfo_1

This function is used to read information about a digital input byte. Each

input byte represents 8 digital input bits.

Definition

NMX_STATUS NMX_GetDigitalInputInfo_1(

NMX_PHANDLE pHandle,

unsigned long ulInputByteNo,

unsigned long* pulBoxNo,

unsigned long* pulBoxByteNo);

Parameter

pHandle

189

196

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Connection Handle .

ulInputByteNo

Number of the digital input byte.

The first byte has the number 0.

Example: Having a device with 4 input bytes, these are numbered 0..3.

pulBoxNo

Number of the Box, where the digital inputs are located.

pulBoxByteNo

Number of the digital input byte within its measurement box.

Numbering starts at 1 with each Box.

Example: In a system with 2 Boxes à 16 digital inputs, input byte 3 is the

1st input byte of the second box. Thus the value 1 is returned.

Typical function call (C example)

NMX_GetDigitalInputInfo_1(pHandle, ulInByte, &ulBoxNo,
&ulBoxByteNo);

.Net DLL specific implementation

NMX_MSTATUS GetDigitalInputInfo_1(

System::IntPtr pHandle,

System::UInt32 ulInputByteNo,

System::UInt32 %pulBoxNo,

System::UInt32 %pulBoxByteNo);

Comments

It is good practice reading the digital input count first. Then read the byte

information for each digital input byte.

The function only returns values, if the function return code is NST_SUCCESS.

Otherwise the values remain unchanged.

162

152

189

197

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

4.3.8.7 NMX_GetDigitalOutputInfo_1

This function is used to read information about a digital output byte. Each

output byte represents 8 digital output bits.

Definition

NMX_STATUS NMX_CALLCONV NMX_GetDigitalOutputInfo_1(

NMX_PHANDLE pHandle,

unsigned long ulOutputByteNo,

unsigned long* pulBoxNo,

unsigned long* pulBoxByteNo);

Parameter

pHandle

Connection Handle .

ulOutputByteNo

Number of the digital output byte.

The first byte has the number 0.

Example: Having a device with 4 output bytes, these are numbered 0..3.

pulBoxNo

Number of the Box, where the digital outputs are located.

pulBoxByteNo

Number of the digital output byte within its measurement box.

Numbering starts at 1 with each Box.

Example: In a system with 2 Boxes à 16 digital outputs, output byte 3 is

the 1st output byte of the second box. Thus the value 1 is returned.

Typical function call (C example)

NMX_GetDigitalOutputInfo_1(pHandle, ulOutByte, &ulBoxNo,
&ulBoxByteNo);

162

198

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

.Net DLL specific implementation

NMX_MSTATUS GetDigitalOutputInfo_1(

System::IntPtr pHandle,

System::UInt32 ulOutputByteNo,

System::UInt32 %pulBoxNo,

System::UInt32 %pulBoxByteNo);

Comments

It is good practice reading the digital output count first. Then read the

byte information for each digital output byte.

The function only returns values, if the function return code is NST_SUCCESS.

Otherwise the values remain unchanged.

4.3.9 Static Measurement (Non-Realtime)

Static measurement is used to get a snapshot of the current measurement

values and digital input states. It is very easy to implement

For more information see the chapter "Static vs. Sampling ".

4.3.9.1 NMX_StaticGet32_1

This function is used to get a snapshot of:

· Current measurement values

· Current hardware status of the measurement channels

· Current digital input status

· Current status of the measurement boxes ("Box event")

See also the HowTo -Guide.

Definition

NMX_STATUS NMX_StaticGet32_1(

NMX_PHANDLE pHandle,

signed long aslValues[], unsigned long ulValuesNElements,

unsigned char aucHardwareStatus[], unsigned long
ulSizeofHardwareStatus,

unsigned char aucDigiIn[], unsigned long ulSizeofDigiIn,

unsigned char aucBoxStatus[], unsigned long
ulSizeofBoxStatus,

152

189

140

242

199

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

unsigned long* pulUpdateCtr);

Parameter

pHandle

Connection Handle .

aslValues

Array, in which the measurement values shall be stored.

The data type of the array is "signed 32 Bit". See chapter "Data

Types " for more information.

The array must be provided by your application.

Technically, this parameter is the same as a pointer to the array. Its type

is: signed long*

ulValuesNElements

Number of elements of the array aslValues.

Example: aslValues points to an array with 64 elements, each with 32 Bit

(Total size = 256 Bytes). Then: ulValuesNElements = 64;

aucHardwareStatus

Array, in which the hardware status for the measurement channels shall

be stored.

The data type of the array is "unsigned 8 Bit".

The array must be provided by your application.

Technically, this parameter is the same as a pointer to the array. Its type

is: unsigned char*

ulSizeofHardwareStatus

Size of the array aucHardwareStatus in Bytes.

aucDigiIn

Array, in which the digital input bytes shall be stored.

The data type of the array is "unsigned 8 Bit".

The array must be provided by your application.

Technically, this parameter is the same as a pointer to the array. Its type

is: unsigned char*

162

148

200

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

ulSizeofDigiIn

Size of the array aucDigiIn in Bytes.

aucBoxStatus

Array, in which the status information for each box shall be stored.

The data type of the array is "unsigned 8 Bit".

The array must be provided by your application.

Technically, this parameter is the same as a pointer to the array. Its type

is: unsigned char*

ulSizeofBoxStatus

Size of the array aucBoxStatus in Bytes.

pulUpdateCtr

A DLL-internal counter is updated each time new static data has been

received from the device. This counter can be read-out here.

Typical function call (C example)

NMX_StaticGet32_1(pHandle, aslMeasVal, sizeof(aslMeasVal)/4,
aucHardStat, sizeof(aucHardStat), aucDigiIn, sizeof(aucDigiIn),
aucBoxStatus, sizeof(aucBoxStatus), &ulNUpdates);

.Net DLL specific implementation

NMX_MSTATUS StaticGet32_1(

System::IntPtr pHandle,

array<System::Int32>^aslValues,

array<System::Byte>^aucHardwareStatus,

array<System::Byte>^aucDigiIn,

array<System::Byte>^aucBoxStatus,

System::UInt32 %pulUpdateCtr);

No Length/Sizeof-Parameters are required for the arrays, since this

information automatically available in a .Net environment.

The arrays will not be resized within the function call for performance

reasons. This means they should be large enough to store all the data.

Example: in a system with 24 measurement channels, the arrays aslValues and

aucHardwareStatus should have a minimum size of 24 array elements.

152

201

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

If the array is shorter, not all data will be available for your application. (The

size is checked -> no risk for crash.)

Comments

The notification NMXNOTIFY_NEW_STATIC32 can be used to get informed

about new data.

Never use digital in-/outputs for emergency critical applications. If required,

use an external emergency circuit. See the users manual of your measurement

system for more information.

Status-Byte for measurement channels for 1Vpp incremental
encoders (INC)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PwrOvl
d

Refmar
k

Vector GCom
p

OCom
p

AmpErr Fast

PwrOvld

Error: A power supply overload of the incremental encoder(s)
has been detected.

Refmark

The reference index has been crossed.

Vector

Error: The signal vector, which has been calculated from the
cosine- and sine-signal, is too small. (Can only occur with 1Vpp
incremental encoders.)

GComp

Error: The gain-control has reached its limit. (Can only occur
with 1Vpp incremental encoders.)

OComp

176

202

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Error: The offset-control has reached its limit. (Can only occur
with 1Vpp incremental encoders.)

AmpErr

Error: One or both AD-converters for the measurement of the
sine-/cosine-signal is/are overdriven. (Can only occur with
1Vpp incremental encoders.)

Fast

Error: The input frequency is too high.

Status-Byte for inductive probes (TFV)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

LinActi
ve

IdentAc
tive

LinFailu
re

ShortCi
rc

ShortCirc

Error: Short circuit of the sine-oscillator

LinFailure

Failed reading / applying the linearisation data.
This bit is only available, if the measurement hardware and the
probe support linearisation.

IdentActive

Reading the probe identification and linearisation data is active.
This bit is only available, if the measurement hardware and the
probe support linearisation.

LinActive

Probe linearisation is active.
This bit is only available, if the measurement hardware and the
probe support linearisation.

203

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Status-Byte for analogue inputs (AIN)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

24VOvl
d

VRefOv
ld

24VOvld

Error: Overload of the 24V output supply.

VRefOvld

Error: Overload of the reference voltage output.

Status-Byte for temperature measurement (TEMP)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TempI
nvalid

SenseF
ailure

ADErro
r

ColdJu
nctionE
rrorHw

ColdJu
nctionE
rrorSw

SenseV
oltHigh

SenseV
oltLow

OutOfR
ange

OutOfRange

Sensor input voltage is out of range

SenseVoltLow

Sensor reading is below normal range.

SenseVoltHigh

Sensor reading is above normal range.

ColdJunctionErrorSw

Cold junction sensor result is beyond normal range.

ColdJunctionErrorHw

204

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Cold junction sensor has a hardware fault error.

ADError

Bad ADC reading. Could be large external noise event.

SenseFailure

Bad sensor reading.

TempInvalid

Temperature value may be invalid.

4.3.9.2 NMX_StaticSetMedianDepth_1

This function is used to modify, enable or disable the median filter, which is

applied on static measurement values.

Definition

NMX_STATUS NMX_StaticSetMedianDepth_1(

NMX_PHANDLE pHandle,

unsigned long ulMedianDepth);

Parameter

pHandle

Connection Handle .

ulMedianDepth

Number of samples, which are used to calculate their median value.

Using an odd value (3, 5, 7, ...) is recommended.

A value of 1 disables the median calculation.

Typical function call (C example)

NMX_StaticSetMedianDepth_1(pHandle, 3);

.Net DLL specific implementation

162

152

205

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

NMX_MSTATUS StaticSetMedianDepth_1(

System::IntPtr pHandle,

System::UInt32 ulMedianDepth);

Comments

The default depth is 5.

The value should not be too high. Otherwise you get a long delay.

4.3.9.3 NMX_SetOutputs_1

This function is used to change the state of the digital outputs.

Definition

NMX_STATUS NMX_SetOutputs_1(

NMX_PHANDLE pHandle,

unsigned char* pucDigiOut, unsigned long ulSizeofDigiOut,

unsigned char ucForceSendImmediately);

Parameter

pHandle

Connection Handle .

pucDigiOut

Pointer to the array, in which the digital output bytes are stored.

ulSizeofDigiOut

Size of the array "behind" pucDigiOut in Bytes.

ucForceSendImmediately

0 -> Default: The output data will be send with the next communication

cycle. The default cycle time is approximately 30ms.

1 -> Send the output data immediately. Use this only, if an urgent

update is required. Sending urgent updates repeatedly at a high

frequency could slow down transfer rate for sampled data.

162

206

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Typical function call (C example)

NMX_SetOutputs_1(pHandle, aucDigiOut, sizeof(aucDigiOut), 0);

.Net DLL specific implementation

NMX_MSTATUS SetOutputs_1(

System::IntPtr pHandle,

array<System::Byte>^aucDigiOut,

System::Byte ucForceSendImmediately);

No Length/Sizeof-Parameter is required for the array aucDigiOut, since this

information automatically available in a .Net environment.

Comments

With ucForceSendImmediately = 0, the output data is only updated inside

the NMX DLL with this function call. Each time cyclic data is exchanged

between the DLL and the device, the output data is send to the device. No

matter if it has been changed or not.

Never use digital in-/outputs for emergency critical applications. If required,

use an external emergency circuit. See the users manual of your measurement

system for more information.

4.3.9.4 NMX_DisableOutputUpdate_1

Digital output data is normally transferred cyclically from the NMX DLL to

the device. This function is used to stop this cyclic update.

It is typically not used within standard measurement applications. It could be

helpful, if a manual manipulation of the outputs shall be done, e.g. using the

configuration tool of the measurement system.

Definition

NMX_STATUS NMX_DisableOutputUpdate_1(

NMX_PHANDLE pHandle);

Parameter

152

207

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

pHandle

Connection Handle .

Typical function call (C example)

NMX_DisableOutputUpdate_1(pHandle);

.Net DLL specific implementation

NMX_MSTATUS DisableOutputUpdate_1(System::IntPtr pHandle);

4.3.9.5 NMX_DigitalIoConfig_1

This function is used to disable or enable the automatic reset of digital

outputs after a communication timeout.

By default this is enabled, which means that all outputs are set to low, if there

is a breakdown of the communication between the NMX DLL and the digital

output.

Definition

NMX_STATUS NMX_DigitalIoConfig_1(

NMX_PHANDLE pHandle,

unsigned char ucOutputResetEnabled);

Parameter

pHandle

Connection Handle .

ucOutputResetEnabled

0 -> Resetting the digital outputs to low state after communication

breakdown is disabled.

1 -> Default: Resetting the digital outputs to low state after

communication breakdown is enabled.

162

152

162

208

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Typical function call (C example)

NMX_DigitalIoConfig_1(pHandle, 0);

.Net DLL specific implementation

NMX_MSTATUS DigitalIoConfig_1(

System::IntPtr pHandle,

System::Byte ucOutputResetEnabled);

Comments

By default, the state of all digital outputs is automatically set to low after

communication breakdown is enabled. This means: if the communication

breaks down: all outputs are set to low.

4.3.9.6 NMX_DigitalOutputsGetState_1

This function allows reading the current state of all digital outputs from the

device.

Definition

NMX_STATUS NMX_DigitalOutputsGetState_1(

NMX_PHANDLE pHandle,

unsigned char* pucOutputState,

unsigned long ulSizeofOutputState);

Parameter

pHandle

Connection Handle .

pucOutputState

Pointer to the array, in which the digital output bytes shall be stored.

The data type of the array is "unsigned 8 Bit".

The array must be provided by your application.

ulSizeofOutputState

Size of pucOutputState in Bytes.

152

162

209

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Typical function call (C example)

NMX_DigitalOutputsGetState_1(pHandle, aucOutputs,
sizeof(aucOutputs));

.Net DLL specific implementation

NMX_MSTATUS DigitalOutputsGetState_1(

System::IntPtr pHandle,

array<System::Byte>^aucOutputState);

No Length/Sizeof-Parameter is required for the array aucOutputState, since

this information automatically available in a .Net environment.

The array will not be resized within the function call for performance reasons.

This means it should be large enough to store all the data.

Example: in a system with 32 digital outputs (= 4 outbut bytes), the array

aucOutputState should have a minimum size of 4 array elements.

If the array is shorter, not all data will be available for your application. (The

size is checked -> no risk for crash.)

Comments

The purpose of this function is getting the state of all digital outputs once

after establishing a connection. It should not be called cyclically.

The state reflects the internal data inside the measurement system. It does

not reflect the physical state of an output. Usually both are the same, but

under fault conditions they may differ.

4.3.10 Sampling LowLevel (Time-Triggered Realtime Measurement)

Sampling is used to get real-time data from the measurement system. This

covers measurement values as well as digital in-/output states.

For more information see the chapter "Static vs. Sampling ".

4.3.10.1 NMX_Sampling_GetMaxSpeed_1

This function is used to get the maximum possible sampling speed.

Definition

NMX_STATUS NMX_Sampling_GetMaxSpeed_1(

152

140

210

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

NMX_PHANDLE pHandle,

unsigned long *pulInSamplePeriodUs);

Parameter

pHandle

Connection Handle .

pulInSamplePeriodUs

Minimum sample period in µs. The maximum sampling speed is the

reciprocal value.

Typical function call (C example)

NMX_Sampling_GetMaxSpeed_1(pHandle, &ulMinSamplePeriod);

.Net DLL specific implementation

NMX_MSTATUS Sampling_GetMaxSpeed_1(

System::IntPtr pHandle,

System::UInt32 %pulInSamplePeriodUs);

Comments

The maximum possible speed for endless sampling may be slower. Consult

the users manual of the measurement system for more information about

sampling speed.

4.3.10.2 NMX_Sampling_Reset_1

Reset the whole sampling configuration. If sampling is active, stop it.

This function must be called before a new list of sampling elements is

created via NMX_Sampling_Add...

See also the HowTo -Guide.

Definition

NMX_STATUS NMX_Sampling_Reset_1(

162

152

250

211

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

NMX_PHANDLE pHandle);

Parameter

pHandle

Connection Handle .

Typical function call (C example)

NMX_Sampling_Reset_1(pHandle, &ulMinSamplePeriod);

.Net DLL specific implementation

NMX_MSTATUS Sampling_Reset_1(System::IntPtr pHandle);

Comments

If an active sampling is stopped via NMX_Sampling_Stop_1 and then shall be

restarted with the same sampling elements, there is no need for calling

NMX_Sampling_Reset_1.

However, if a new list of sampling elements shall be created, an existing list

must be cleared by calling NMX_Sampling_Reset_1.

4.3.10.3 NMX_Sampling_AddChannelsAll_1

Use this function to add all measurement channels to the list of sampling

elements.

See also the HowTo -Guide.

Definition

NMX_STATUS NMX_Sampling_AddChannelsAll_1(

NMX_PHANDLE pHandle,

unsigned long* pulNElementsTotal);

Parameter

162

152

250

212

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

pHandle

Connection Handle .

pulNElementsTotal

Total number of sampling elements, which have already been added

since the last call of NMX_Sampling_Reset_1 .

Typical function call (C example)

NMX_Sampling_AddChannelsAll_1(pHandle, &ulNElements);

.Net DLL specific implementation

NMX_MSTATUS Sampling_AddChannelsAll_1(

System::IntPtr pHandle,

System::UInt32 %pulNElementsTotal);

Comments

It is also possible to add only a selection of measurement channels to the list

of sampling elements (see NMX_Sampling_AddChannel_1).

This may

· allow for higher sampling speed with endless sampling or

· shorten the transfer time of the samples with time-limited sampling.

Please note: the same measurement channel cannot be added twice. Thus

you can either use NMX_Sampling_AddChannelsAll_1 or

NMX_Sampling_AddChannel_1, but not both of them.

4.3.10.4 NMX_Sampling_AddChannel_1

Use this function to add a single measurement channel to the list of sampling

elements.

See also the HowTo -Guide.

Definition

162

210

152

212

250

213

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

NMX_STATUS NMX_Sampling_AddChannel_1(

NMX_PHANDLE pHandle,

unsigned long ulChannelNumber,

unsigned long* pulNElementsTotal);

Parameter

pHandle

Connection Handle .

ulChannelNumber

Number of the measurement channel, which shall be added.

The first channel has the number 0.

Having a device with 24 measurement channels, these are numbered

0..23.

pulNElementsTotal

Total number of sampling elements, which have already been added

since the last call of NMX_Sampling_Reset_1 .

Typical function call (C example)

NMX_Sampling_AddChannel_1(pHandle, 5, &ulNElements);

.Net DLL specific implementation

NMX_MSTATUS Sampling_AddChannel_1(

System::IntPtr pHandle,

System::UInt32 ulChannelNumber,

System::UInt32 %pulNElementsTotal);

Comments

It is also possible to add all measurement channels to the list of sampling

elements (see NMX_Sampling_AddChannelsAll_1).

Please note: the same measurement channel cannot be added twice. Thus

you can either use NMX_Sampling_AddChannelsAll_1 or

NMX_Sampling_AddChannel_1, but not both of them.

162

210

152

211

214

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

4.3.10.5 NMX_Sampling_AddDigiInAll_1

Use this function to add all digital input bytes to the list of sampling

elements.

See also the HowTo -Guide.

Definition

NMX_STATUS NMX_Sampling_AddDigiInAll_1(

NMX_PHANDLE pHandle,

unsigned long* pulNElementsTotal);

Parameter

pHandle

Connection Handle .

pulNElementsTotal

Total number of sampling elements, which have already been added

since the last call of NMX_Sampling_Reset_1 .

Typical function call (C example)

NMX_Sampling_AddDigiInAll_1(pHandle, &ulNElements);

.Net DLL specific implementation

NMX_MSTATUS Sampling_AddDigiInAll_1(

System::IntPtr pHandle,

System::UInt32 %pulNElementsTotal);

Comments

It is also possible to add only a selection of digital input bytes to the list of

sampling elements (see NMX_Sampling_AddDigiInByte_1).

This may

· allow for higher sampling speed with endless sampling or

250

162

210

152

215

215

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

· shorten the transfer time of the samples with time-limited sampling.

Please note: the same digital input byte cannot be added twice. Thus you can

either use NMX_Sampling_AddDigiInAll_1 or

NMX_Sampling_AddDigiInByte_1, but not both of them.

4.3.10.6 NMX_Sampling_AddDigiInByte_1

Use this function to add a single digital input byte to the list of sampling

elements.

See also the HowTo -Guide.

Definition

NMX_STATUS NMX_Sampling_AddDigiInByte_1(

NMX_PHANDLE pHandle,

unsigned long ulDigiInByteNo,

unsigned long* pulNElementsTotal);

Parameter

pHandle

Connection Handle .

ulDigiInByteNo

Number of the digital input byte.

The first byte has the number 0.

Example: Having a device with 6 input bytes, these are numbered 0..5.

pulNElementsTotal

Total number of sampling elements, which have already been added

since the last call of NMX_Sampling_Reset_1 .

Typical function call (C example)

NMX_Sampling_AddDigiInByte_1(pHandle, 0, &ulNElements);

.Net DLL specific implementation

250

162

210

152

216

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

NMX_MSTATUS Sampling_AddDigiInByte_1(

System::IntPtr pHandle,

System::UInt32 ulDigiInByteNo,

System::UInt32 %pulNElementsTotal);

Comments

It is also possible to add all digital input bytes to the list of sampling

elements (see NMX_Sampling_AddDigiInAll_1).

Please note: the same digital input byte cannot be added twice. Thus you can

either use NMX_Sampling_AddDigiInAll_1 or

NMX_Sampling_AddDigiInByte_1, but not both of them.

4.3.10.7 NMX_Sampling_AddDigiOutAll_1

Use this function to add all digital output bytes to the list of sampling

elements.

See also the HowTo -Guide.

Definition

NMX_STATUS NMX_Sampling_AddDigiOutAll_1(

NMX_PHANDLE pHandle,

unsigned long* pulNElementsTotal);

Parameter

pHandle

Connection Handle .

pulNElementsTotal

Total number of sampling elements, which have already been added

since the last call of NMX_Sampling_Reset_1 .

Typical function call (C example)

NMX_Sampling_AddDigiOutAll_1(pHandle, &ulNElements);

214

250

162

210

217

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

.Net DLL specific implementation

NMX_MSTATUS Sampling_AddDigiOutAll_1(

System::IntPtr pHandle,

System::UInt32 %pulNElementsTotal);

Comments

It is also possible to add only a selection of digital output bytes to the list of

sampling elements (see NMX_Sampling_AddDigiOutByte_1).

This may

· allow for higher sampling speed with endless sampling or

· shorten the transfer time of the samples with time-limited sampling.

Please note: the same digital output byte cannot be added twice. Thus you

can either use NMX_Sampling_AddDigiOutAll_1 or

NMX_Sampling_AddDigiOutByte_1, but not both of them.

4.3.10.8 NMX_Sampling_AddDigiOutByte_1

Use this function to add a single digital output byte to the list of sampling

elements.

See also the HowTo -Guide.

Definition

NMX_STATUS NMX_Sampling_AddDigiOutByte_1(

NMX_PHANDLE pHandle,

unsigned long ulDigiOutByteNo,

unsigned long* pulNElementsTotal);

Parameter

pHandle

Connection Handle .

ulDigiOutByteNo

152

217

250

162

218

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Number of the digital output byte.

The first byte has the number 0.

Example: Having a device with 6 output bytes, these are numbered 0..5.

pulNElementsTotal

Total number of sampling elements, which have already been added

since the last call of NMX_Sampling_Reset_1 .

Typical function call (C example)

NMX_Sampling_AddDigiOutByte_1(pHandle, 1, &ulNElements);

.Net DLL specific implementation

NMX_MSTATUS Sampling_AddDigiOutByte_1(

System::IntPtr pHandle,

System::UInt32 ulDigiOutByteNo,

System::UInt32 %pulNElementsTotal);

Comments

It is also possible to add all digital output bytes to the list of sampling

elements (see NMX_Sampling_AddDigiOutAll_1).

Please note: the same digital output byte cannot be added twice. Thus you

can either use NMX_Sampling_AddDigiOutAll_1 or

NMX_Sampling_AddDigiOutByte_1, but not both of them.

4.3.10.9 NMX_Sampling_PrepareTime_1

This function is used to prepare a time-based sampling. Before starting the

sampling, it must be prepared.

See also the HowTo -Guide.

Definition

NMX_STATUS NMX_Sampling_PrepareTime_1(

NMX_PHANDLE pHandle,

unsigned long ulSamplePeriod,

unsigned long ulDLLArrayLength,

unsigned long long udMaxSamples);

210

152

216

250

219

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Parameter

pHandle

Connection Handle .

ulSamplePeriod

Time period between two samples in µs, e.g. 1000 for 1ms.

See the chapter "Sampling Speed with Irinos" for more information.

ulDLLArrayLength

Data received from the device is internally buffered in the DLL. This

parameter specifies the internal buffer length in samples.

Example: The sampling speed is 1ms -> 1000Samples/s and the buffer

shall contain a maximum of 10 seconds. Then ulDLLArrayLength =
10000;

udMaxSamples

Maximum number of samples, which shall be recorded.

Use 0 for endless sampling.

Example: The sampling speed is 1ms -> 1000Samples/s. Data shall be

recorded for a maximum of 15 seconds. Then udMaxSamples = 15000;

Typical function call (C example)

Time-limited: NMX_Sampling_PrepareTime_1(pHandle, 1000, 10000,
10000);

Endless: NMX_Sampling_PrepareTime_1(pHandle, 1000, 10000, 0);

.Net DLL specific implementation

NMX_MSTATUS Sampling_PrepareTime_1(

System::IntPtr pHandle,

System::UInt32 ulSamplePeriod,

System::UInt32 ulDLLArrayLength,

System::UInt64 udMaxSamples);

162

141

152

220

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Comments

· For short measurements of a few seconds, it is common practice using the

same value for ulDLLArrayLength and for udMaxSamples.

· The internal buffer is allocated in the heap memory of your application.

· The larger the DLL-internal buffer is, the larger the memory consumption.

For typical time-limited sampling, this is not a problem and the memory

size will be between a few kBytes up to a few MBytes. This applies even to

larger systems.

However, if you would use for example 256 measurement channels of 32

Bit size, and ulDLLArrayLength would be 100000, then 100 MBytes would

be required. This may be too large for your heap memory.

4.3.10.10 NMX_Sampling_Start_1

This function is used to start sampling. Before starting the sampling, it must

be prepared .

See also the HowTo -Guide.

Definition

NMX_STATUS NMX_Sampling_Start_1(

NMX_PHANDLE pHandle);

Parameter

pHandle

Connection Handle .

Typical function call (C example)

NMX_Sampling_Start_1(pHandle);

.Net DLL specific implementation

NMX_MSTATUS Sampling_Start_1(System::IntPtr pHandle);

Comments

218

250

162

152

221

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

4.3.10.11 NMX_Sampling_Stop_1

This function is used to stop an active sampling.

Definition

NMX_STATUS NMX_Sampling_Stop_1(

NMX_PHANDLE pHandle);

Parameter

pHandle

Connection Handle .

Typical function call (C example)

NMX_Sampling_Stop_1(pHandle);

.Net DLL specific implementation

NMX_MSTATUS Sampling_Stop_1(System::IntPtr pHandle);

Comments

If sampling is inactive, nothing happens.

4.3.10.12 NMX_Sampling_ReadColumn32_1

Read sampled values column-wise. Column-wise means, that multiple

samples of the same sampling element are read-out. This could for example

be samples 0..999 from measurement channel 1.

See also the HowTo -Guide.

Definition

NMX_STATUS NMX_Sampling_ReadColumn32_1(

NMX_PHANDLE pHandle,

signed long aslSamples[],

162

152

268

222

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

unsigned long ulMaxSamples,

unsigned long ulElementNo,

unsigned long ulDoNotDelete,

unsigned long* pulSamplesCopied,

unsigned long long* pudNoFirstSample);

Parameter

pHandle

Connection Handle .

aslSamples

The measurement samples will be written into this array. For simplicity,

all sampled values are provided with data type signed long. See

chapter "data types " for more information.

ulMaxSamples

total number of elements of aslSamples.

Example: aslSamples is defined as "signed long aslSamples[1000]".

ulElementNo

Number of the sampling element, starting with 0 for the first sampling

element.

ulDoNotDelete

0: samples will be deleted from the DLL-internal buffer after readout.

1: samples will NOT be deleted from the DLL-internal buffer after

readout.

pulSamplesCopied

ulMaxSamples.

pudNoFirstSample

162

148

223

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Number of the first sample in aslSamples, counted from the beginning

of sampling, starting at 0.

Example:

The 1. time after the start of sampling, this function is called and 162

samples are read-out. pudNoFirstSample = 0 will be returned.

The 2. time this function is called, 97 samples are read-out.

pudNoFirstSample = 162 will be returned.

The 3. time this function is called, 212 samples are read-out.

pudNoFirstSample = 259 will be returned (162 + 97 = 259).

Typical function call (C example)

Assuming aslSamples is defined as: signed long aslSamples[10000];

Example 1: NMX_Sampling_ReadColumn32_1(pHandle, aslSamples,
10000, 4, 0, &ulSamplesCopied, &udNoFirstSample);

Example 2: NMX_Sampling_ReadColumn32_1(pHandle, &aslSamples[162],
10000-162, 4, 0, &ulSamplesCopied, &udNoFirstSample);

.Net DLL specific implementation

NMX_MSTATUS Sampling_ReadColumn32_1(

System::IntPtr pHandle,

array<System::Int32>^aslSamples,

System::UInt32 ulArrayIndex,

System::UInt32 ulMaxSamples,

System::UInt32 ulElementNo,

System::UInt32 ulDoNotDelete,

System::UInt32 %pulSamplesCopied,

System::UInt64 %pudNoFirstSample);

The array aslSamples will not be resized within the function call for

performance reasons. This means it should be large enough to store all the

data.

Via the parameters ulArrayIndex and ulMaxSamples, it can be defined in

which area of aslSamples the sampled data can be written. This is especially

helpful, if the sampled data is read in multiple blocks of data (-> no

additional copying required).

If the sampled data is read at once, typically ulArrayIndex = 0 and

ulMaxSamples = aslSamples.Length.

Comments

152

224

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

· The standard way is deleting sampled data inside the NMX DLL, after it has

been read-out. This is done by setting: ulDoNotDelete = 0;

If you want to be able to read it out more than once, it is possible to set

ulDoNotDelete = 1;. Naturally this makes no sense for endless sampling!

· It is possible to get informed about new data by the notification

NMXNOTIFY_SAMPLING_NEW_DATA.

· It is good practice reading sampled data in small portions, for example

each time new data has arrived at the DLL.

4.3.10.13 NMX_Sampling_ReadRow32_1

Read sampled values row-wise. Row-wise means, that all sampling elements

of a single sampling point are read-out. Each time this function is called, the

oldest sample data is read-out and deleted afterwards.

See also the HowTo -Guide.

Definition

NMX_STATUS NMX_Sampling_ReadRow32_1(

NMX_PHANDLE pHandle,

signed long aslSamples[],

unsigned long ulMaxSamples,

unsigned long* pulSamplesCopied,

unsigned long long* pudSampleNo);

Parameter

pHandle

Connection Handle .

aslSamples

The measurement samples will be written into this array. For simplicity,

all sampled values are provided with data type signed long. See

chapter "data types " for more information.

ulMaxSamples

176

273

162

148

225

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

total number of elements of aslSamples.

Example: aslSamples is defined as "signed long aslSamples[64]". Then

pulSamplesCopied

ulMaxSamples.

pudSampleNo

Number of the this sample, counted from the beginning of sampling,

starting at 0.

Example:

The 1. time after the start of sampling, this function is called,

pudSampleNo = 0 will be returned.

The 2. time this function is called, pudSampleNo = 1 will be returned.

The 3. time this function is called, pudSampleNo = 2 will be returned.

Typical function call (C example)

Assuming aslSamples is defined as: signed long aslSamples[64];

NMX_Sampling_ReadRow32_1(pHandle, aslSamples, 64,
&ulSamplesCopied, &udNoSample);

.Net DLL specific implementation

NMX_MSTATUS Sampling_ReadRow32_1(

System::IntPtr pHandle,

array<System::Int32>^aslSamples,

System::UInt32 %pulSamplesCopied,

System::UInt64 %pudSampleNo);

The array aslSamples will not be resized within the function call for

performance reasons. This means it should be large enough to store all the

data.

If for example 23 sampling elements have been assigned with

NMX_Sampling_Add..., the the minimum array size should be 23.

If it is smaller, it won't crash but not all data will be available to your

application.

152

226

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Comments

· It is possible to get informed about new data by the notification

NMXNOTIFY_SAMPLING_NEW_DATA.

· Using NMX_Sampling_ReadRow32_1 it is not possible, reading the same

data twice.

4.3.10.14 NMX_Sampling_GetStatus_1

This function is used to read the current sampling status.

See also the HowTo -Guide.

Definition

NMX_STATUS NMX_Sampling_GetStatus_1(

NMX_PHANDLE pHandle,

unsigned char* pucStatus,

unsigned long* pulNSamplingElements,

unsigned long long* pudSamplesReceived,

unsigned long long* pudMaxSamples);

Parameter

pHandle

Connection Handle .

pucStatus

Current sampling status. See definition below.

pulNSamplingElements

Number of sampling elements used.

pudSamplesReceived

Provide the number of samples, which have been received by the DLL

from the device.

pudMaxSamples

176

277

162

227

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Provide the maximum number of samples, that will be recorded.

If you started endless sampling, this value will be 0xFFFFFFFFFFFFFFFF =

18446744073709551615.

Typical function call (C example)

Assuming aslSamples is defined as: signed long aslSamples[64];

NMX_Sampling_ReadRow32_1(pHandle, aslSamples, 64,
&ulSamplesCopied, &udNoSample);

Sampling Status

The sampling status is defined as follows:

Status
Hex

value
Description

EMS_INACTIVE 0x00 No sampling active.

EMS_PREPARED 0x01
Sampling has been prepared, but not yet

started.

EMS_ACTIVE 0x02 Sampling is active.

EMS_DATA_TRANSFER0x03
Sampling has ended or has been stopped, but

data transfer is still active.

EMS_FINISHED 0x04 Sampling is finished.

EMS_ERROR_CONFIG0xF0
Error during configuration / preparation of

sampling.

EMS_ERROR_START0xF1 Error during start of sampling.

EMS_ERROR_NOTPREP0xF2
Error: start not possible, sampling has not

been prepared.

EMS_ERROR_RUN 0xF8 Error occurred while sampling was active.

By definition, all values > 0xF0 are error states.

228

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

.Net DLL specific implementation

NMX_MSTATUS Sampling_GetStatus_1(

System::IntPtr pHandle,

System::Byte %pucStatus,

System::UInt32 %pulNSamplingElements,

System::UInt64 %pudSamplesReceived,

System::UInt64 %pudMaxSamples);

Comments

It is possible to get informed about various sampling events via

notfications .

4.3.11 Sampling HighLevel (Application-specific Realtime Measurement)

Using the high-level functionality is optional! If only time-triggered

realtime measurement is required, using the low-level sampling functionality is

sufficient!

The High-Level Sampling functionality provides an easy way to implement

intelligent real-time measurement functions. All high-level functions

internally use the the low-level time-triggered realtime sampling .

152

176

209

229

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

The following high-level sampling types are available:

· TFT stands for "Trigger + Filter + Tail values" and was developed to

meet the specific needs of one customer.

4.3.11.1 NMX_Sampling_PreparePosition_1

Minimum DLL-Version: V1.2.0.13

This function is used to prepare a position-triggered sampling. With

position-triggered sampling, one measurement channel is used as a trigger

source. In defined position distances, it triggers the other channels. This

results in sets of measurement values (samples), which are recorded at

equidistant position distances. Technically, position-triggered sampling uses

an under

Before starting the sampling, it must be prepared.

See also the HowTo -Guide.

232

284

230

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Definition

NMX_STATUS NMX_Sampling_PreparePosition_1(

NMX_PHANDLE pHandle,

unsigned long ulSamplePeriod,

unsigned long ulArrayLength,

unsigned long long udMaxSamples,

unsigned long ulTriggerChannelNumber,

double fdScale,

double fdStart,

double fdDistance);

Parameter

pHandle

Connection Handle .

ulSamplePeriod

Sampling-period for the underlying time-based sampling.

Time period between two samples of the measurement hardware in µs,

e.g. 1000 for 1ms.

This is the sampling period (-> measurement frequency) which will be

used by the measurement system for acquiring the time-triggered

measurement samples.

See the chapter "Sampling Speed with Irinos" for more information.

If you are unsure which value to use, 1000 (= 1ms) is a good value for

starting your development.

ulArrayLength

Triggered data is internally buffered in the DLL. This parameter

specifies the internal buffer length in samples.

Since position-triggered sampling is usually not endless, this parameter

has typically the same value as udMaxSamples.

udMaxSamples

Maximum number of samples, which shall be recorded.

(0 can be used for endless sampling, even though this typically makes

no sense with position-triggered sampling.)

162

141

231

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Example: 360° shall be sampled with a position distance of 0.1°. This

udMaxSamples = 360° / 0.1° = 3600.

To stop position triggering before udMaxSamples has been reached,

use NMX_Sampling_Stop_1 .

ulTriggerChannelNumber

Number of the measurement channel, which shall be used as source for

the position trigger.

The first channel has the number 0.

Having a device with 24 measurement channels, these are numbered

0..23.

This measurement channel can be part of the sampled channels (this

means it has been added to sampling via

NMX_Sampling_AddChannel_1 or

NMX_Sampling_AddChannelsAll_1). If this is not the case, it will be

added automatically.

fdScale

Format: 64 Bit floating point number according to IEEE 754 (-> double).

Using the scale value, the position value of the Trigger Channel can be

converted to a physical unit, e.g. from increments to degrees. It thereby

sets the unit of the parameters fdStart and fdDistance.

If 1.0 is used, then the raw value from the trigger channel is used.

Example: An encoder with 720000 increments is used. The preferred

resolution is 1°. Then fdScale = 720000 / 360 = 2000.

If a trigger distance (-> see fdDistance) of 0.1° is required, then

fdDistance will now be 0.1 instead of 200.

fdStart

Format: 64 Bit floating point number according to IEEE 754 (-> double).

Start position for triggering: Triggering will not start, before this

position has been crossed.

below fdStart to a value equal/above fdStart.

above fdStart to a value equal/below fdStart.

The unit of this parameter depends on fdScale.

221

212

211

232

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

fdDistance

Format: 64 Bit floating point number according to IEEE 754 (-> double).

Position distance between two trigger positions.

The unit of this parameter depends on fdScale.

Typical function call (C example)

NMX_Sampling_PreparePosition_1(pHandle, 1000, 10000, 10000, 8,
2000.0f, 0.0f, 0.1f);

Comments

· For short measurements of a few seconds, it is common practice using the

same value for ulArrayLength and for udMaxSamples.

· The internal buffer is allocated in the heap memory of your application.

· The larger the DLL-internal buffer is, the larger the memory consumption.

For typical time-limited sampling, this is not a problem and the memory

size will be between a few kBytes up to a few MBytes. This applies even to

larger systems.

However, if you would use for example 256 measurement channels of 32

Bit size, and ulDLLArrayLength would be 100000, then 100 MBytes would

be required. This may be too large for your heap memory.

4.3.11.2 NMX_Sampling_PrepareCustomTFT_1

Minimum DLL-Version: V1.1.0.11

This function is used to prepare a time-based sampling with optional

triggering, arithmetic average filtering and "recording tail values after stop".

Before starting the sampling, it must be prepared.

See also the HowTo -Guide.

Definition

NMX_STATUS NMX_Sampling_PrepareCustomTFT_1(

NMX_PHANDLE pHandle,

unsigned long ulSamplePeriod,

unsigned long ulFilteredPeriod,

unsigned long ulArrayLength,

unsigned long long udMaxSamples,

288

233

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

unsigned long ulNTailSamples,

unsigned long ulTriggerDigiInByteNo,

unsigned long ulTriggerDigiInBitNo,

unsigned long ulTriggerMode,

unsigned long ulTriggerPolarity);

Parameter

pHandle

Connection Handle .

ulSamplePeriod

Time period between two samples of the measurement hardware in µs,

e.g. 1000 for 1ms.

This is the sampling period (-> measurement frequency) which will be

used by the measurement system for acquiring the time-triggered

measurement samples.

See the chapter "Sampling Speed with Irinos" for more information.

ulFilteredPeriod

Time period between two filtered samples provided to the

application / measurement software in µs, e.g. 5000 for 5ms.

This value must be an integer multiple of ulSamplePeriod.

With this parameter, an average filter can be applied to the

measurement samples. To disable the Filter, use the same values for

ulSamplePeriod and ulFilteredPeriod.

Example: ulSamplePeriod is 1ms (=1000), then ulFilteredPeriod can be

1, 2, 3, 4, 5, ..., 10, ... 100ms.

If the SamplePeriod is 1ms and the FilteredPeriod is 5ms, then an

average filter of the past 5 samples is used.

ulArrayLength

Data received from the device is internally buffered in the DLL. This

parameter specifies the internal buffer length in samples.

Example: The filtered period is 1ms -> 1000Samples/s and the buffer

shall contain a maximum of 10 seconds. Then ulDLLArrayLength =
10000;

udMaxSamples

162

141

234

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Maximum number of samples, which shall be recorded.

Use 0 for endless sampling.

Example: The sampling speed is 1ms -> 1000Samples/s. Data shall be

recorded for a maximum of 15 seconds. Then udMaxSamples = 15000;

ulNTailSamples

If this value is 0, then sampling will be stopped immediately, when the

stop condition occurs.

If this value is >0, then ulNTailSamples will be sampled after the stop

condition occurs.

The tail samples could for example be used for additional filtering.

ulTriggerDigiInByteNo

Number of the digital input byte, which contains the digital input

information. Counting starts with 0.

This parameter is only relevant, if Triggering is used (ulTriggerMode >

0).

ulTriggerDigiInBitNo

Number of the bit in ulTriggerDigiInByteNo, which contains the digital

input information. Counting starts with 0, maximum is 7.

This parameter is only relevant, if Triggering is used (ulTriggerMode >

0).

Example: A measurement system has 16 digital inputs, counted from 1

to 16. For input no 11, the parameters are:

ulTriggerDigiInByteNo = 1;

ulTriggerDigiInBitNo = 2;

ulTriggerMode

See general information about trigger mode .

The following modes are supported:

0 = Trigger disabled

1 = Edge

2 = Level

3 = Edge Start

4 = Level Once

ulTriggerPolarity

163

235

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

1 = falling edge / low active

2 = rising edge / high active

This parameter is only relevant, if Triggering is used (ulTriggerMode >

0).

Typical function call (C example)

Time-limited: NMX_Sampling_PrepareCustomTFT_1(pHandle, 1000, 5000,
10000, 10000, 4, 0, 0, 0, 0);

Endless: NMX_Sampling_PrepareCustomTFT_1(pHandle, 1000, 5000,
10000, 0, 0, 1, 4, 2);

Comments

· For short measurements of a few seconds, it is common practice using the

same value for ulArrayLength and for udMaxSamples.

· The internal buffer is allocated in the heap memory of your application.

· The larger the DLL-internal buffer is, the larger the memory consumption.

For typical time-limited sampling, this is not a problem and the memory

size will be between a few kBytes up to a few MBytes. This applies even to

larger systems.

However, if you would use for example 256 measurement channels of 32

Bit size, and ulDLLArrayLength would be 100000, then 100 MBytes would

be required. This may be too large for your heap memory.

4.3.12 Diagnostics

Your measurement system is equipped with an internal diagnostic service. It

supports identifying special events and errors.

4.3.12.1 NMX_DiagClearEvent_1

This function allows clearing an event, which has occurred.

Definition

NMX_STATUS NMX_DiagClearEvent_1(

NMX_PHANDLE pHandle,

unsigned long ulBoxNo,

unsigned char ucEventNo);

236

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Parameter

pHandle

Connection Handle .

ulBoxNo

Number of the Box, where the event shall be cleared.

The first measurement box has the number 0.

In a system with 5 measurement boxes, these are numbered 0..4.

ucEventNo

Number of the Event, which shall be cleared.

Current events are readout using NMX_StaticGet32_1 -> Box-Status.

Typical function call (C example)

NMX_DiagClearEvent_1(pHandle, 0, 13);

.Net DLL specific implementation

NMX_MSTATUS DiagClearEvent_1(

System::IntPtr pHandle,

System::UInt32 ulBoxNo,

System::Byte ucEventNo);

Comments

Events are always handled Box-wise.

4.3.12.2 NMX_DiagGetEventText_1

This function provides a textual description of an event. It could for example

be used to display the event description instead or together with an event

number.

Definition

NMX_STATUS NMX_DiagGetEventText_1(

NMX_PHANDLE pHandle,

162

198

152

237

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

unsigned char ucEventNo,

char* pcText, unsigned long ulSizeofText);

Parameter

pHandle

Connection Handle .

ucEventNo

Number of the event.

pcText

ASCII based string with event description. The maximum string length is

129 characters (128 + Termination).

ulSizeofText

Maximum size of pcText in Bytes/Characters.

Typical function call (C example)

NMX_DiagGetEventText_1(pHandle, 15, acText, sizeof(acText));

.Net DLL specific implementation

NMX_MSTATUS DiagGetEventText_1(

System::IntPtr pHandle,

System::Byte ucEventNo,

System::String ^%strText);

No Length/Sizeof-Parameter is required for the string strText, since this

information is not required in a .Net environment. It is directly returned as

Unicode-strings. Hence no additional conversion is required.

Comments

162

152

238

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

4.3.12.3 NMX_SetDateTime_1

This function is used to update the current date & time at the device by using

the PC time.

Definition

NMX_STATUS NMX_SetDateTime_1(

NMX_PHANDLE pHandle);

Parameter

pHandle

Connection Handle .

Typical function call (C example)

NMX_SetDateTime_1(pHandle);

.Net DLL specific implementation

NMX_MSTATUS SetDateTime_1(System::IntPtr pHandle);

Comments

The measurement system does not have an internal Realtime-Clock. In order

to provide advanced information in the diagnostic memory, the current date

& time is transferred to the measurement system while connecting.

The internal clock does not take into account leap years of leap seconds.

Further it has no high accuracy. Hence it is recommended to rewrite the

date/time information once a day. It can be rewritten any time.

The date & time information has no effect on measurement or sampling. It is

just for the diagnostic memory.

162

152

239

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

4.4 HowTo

This chapter is intended as an implementation guideline for the NMX DLL in

order to get started quickly.

Another good source for the first steps, is the Demo application, which is

available for various programming environments.

4.4.1 Small Measurement Application

For simple applications with low requirements regarding measurement

speed, only a small portion of the NMX DLLs functionality is required.

In case reading measurement values from time to time, only 3 simple steps

need to be implemented into your application:

1. Establishing a connection to the measurement system. This is typically

done after the application has been started.

2. Closing the connection to the measurement system. This is typically

done before the application is closed.

3. Reading the measurement values cyclically , e.g. within a timer routine.

It is good practice to check here for a connection failure. This is done by

evaluating the return value of the function NMX_StaticGet32_1 .

Please note: As an alternative to the NMX DLL, a very simple ASCII based

interface is available. It can be accessed either via Telnet (similar to RS232)

or via UDP. Please consult the respective documentation.

4.4.2 Establishing a connection

A connection is established using NMX_DeviceIPv4Open_1 . All required

connection parameters are assigned via its function parameters. No

additional configuration file or similar is required.

Before establishing a connection, a connection handle must be declared.

Establishing a connection can last a few hundred milliseconds, since the

Windows IP stack may need to determine device-specific network data (e.g.

MAC address).

Please note: if a firewall is active, the connection must be allowed by this

firewall. With common firewalls, e.g. Windows Firewall, the user is asked one-

time, if the connection shall be allowed. This has to be answered with "Yes".

239

241

243

198

173

162

240

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

In the following examples, the connection is established to the IP address

192.168.3.99. The port numbers 22517 and 22516 are fixed.

It is strongly recommended to store all these parameters in an INI-File, XML-

File, in the Registry or something similar.

C / C++

// Global definition
NMX_PHANDLE pHandle = NULL;

// Establish the connection.
NMX_STATUS tStatus = NMX_DeviceIPv4Open_1(192, 168, 3, 99,
22517, 22516, &pHandle);
if (tStatus == NST_SUCCESS) {

// Connection has been established successfully.

// Do some further initialization here, e.g. register
notifications.
}
else {

// Failed establishing the connection. Show an error
message.
}

Delphi

// Global definition
pNmxHandle : NMX_PHANDLE;

// Example: Establish connection within a button event handler.
procedure TMainForm.btnConnectClick(Sender: TObject);
var
 tNmxStat : NMX_STATUS;
begin
 tNmxStat := NMX_DeviceIPv4Open_1(192, 168, 3, 99, 22517, 22516, pNmxHandle);
 if (tNmxStat = NST_SUCCESS) then begin
 // Connection has been established successfully.
 // Do some further initialization here, e.g. register notifications.
 end
 else begin
 // Failed establishing the connection. Show an error message.
 end;
end;

241

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

C# / .Net

// Global definition
IntPtr pDevice = IntPtr.Zero;

// Establish the connection.
if (cNmx.DeviceIPv4Open_1(192, 168, 3, 99, 22517, 22516, ref
pDevice) == NMX_MSTATUS.SUCCESS) {

// Connection has been established successfully.

// Do some further initialization here, e.g. register
notifications.
}
else {

// Failed establishing the connection. Show an error
message.
}

4.4.3 Closing a connection

A connection is closed using NMX_DeviceClose_1 .

Before closing an application, which used the NMX DLL, it must be ensured

that all connections are closed. It is common practice to call

NMX_DeviceClose_1 always before closing the measurement application.

If no connection is established, nothing happens.

C / C++

NMX_DeviceClose_1(&pHandleNmx);

Delphi

NMX_DeviceClose_1(pNmxHandle);

C# / .Net

cNmx.DeviceClose_1(ref pDevice);

175

175

242

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

4.4.4 Reading static data

Reading static data is in most cases an essential part of the measurement

application. It is very simple to integrate.

The static data is transferred cyclically from the measurement system to the

NMX DLL. Here it is stored in the internal buffer.

The typical update rate is approximately 30 Hz, but it is not guaranteed.

This cyclic update starts automatically after establishing the connection.

The measurement application can readout the static data from the DLL-

internal buffer any time using NMX_StaticGet32_1 . It will then get the

newest data.

Typically all data is read-out via a single function call. There is neither a need

nor a possibility to read each measurement channel value individually. The

same applied to the other static data.

However, it is important to know, that calling the function

NMX_StaticGet32_1 does not cause any additional data transfer. Thus

there is no significant drawback calling it from different places of your source

code (but only within the same thread). It is for example no problem reading

static measurement values from one part of your software and reading

digital input data from another part. Just set the unused pointers to NULL and

the respective array size to 0.

There are two common ways of reading static data:

· Event based after receiving a notification or

· Calling NMX_StaticGet32_1 cyclically .

The technically better solution is event based. It is strongly recommended, if

sampling is used. For very simple applications the cyclic call could be an

alternative.

198

198

245

243

250

243

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

4.4.4.1 Cyclically (Polling)

Cyclically reading data, also known as polling, is the most simple way. It is

done by calling NMX_StaticGet32_1 regularly.

Typically it is called in a time-interval of approximately 30-50 ms.

C / C++

// Global definition
#define N_STATIC_CH_DISPLAY (64) // Max number of
static channels used. Adapt it to your needs.
#define N_DIGIIO_DISPLAY (128) // Max number of
digital inputs used. Adapt it to your needs.
#define N_MAX_BOXES (32) // Max number of
boxes supported.

// ###-> Implement timer and timer-event-handler, Interval e.g.
30ms
private: System::Void tmrStatic_Tick(System::Object^ sender,
System::EventArgs^ e) {

// Disable this timer

tmrStatic->Enabled = false;

// Update static data, if new data available.

signed long aslMeasVal[N_STATIC_CH_DISPLAY];

unsigned char aucHardStat[N_STATIC_CH_DISPLAY];

unsigned char aucDigiIn[N_DIGIIO_DISPLAY / 8];

unsigned char aucBoxStatus[N_MAX_BOXES];

unsigned long ulNUpdates = 0;

memset(aslMeasVal, 0, sizeof(aslMeasVal));

memset(aucHardStat, 0, sizeof(aucHardStat));

memset(aucDigiIn, 0, sizeof(aucDigiIn));

memset(aucBoxStatus, 0, sizeof(aucBoxStatus));

if (NMX_StaticGet32_1(pHandleNmx, aslMeasVal,
N_STATIC_CH_DISPLAY, aucHardStat, sizeof(aucHardStat),
aucDigiIn, sizeof(aucDigiIn), aucBoxStatus,
sizeof(aucBoxStatus), &ulNUpdates) == NST_SUCCESS) {

// New data successfully received. Display,
Calculate, Store, ...

}

else {

// Error reading data. Typical error:
NST_DX_TIMEOUT_COMMON due to communication breakdown.

}

198

244

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

// Re-enable this timer

tmrStatic->Enabled = true;
}

Delphi

const cMaxTotalChannels = 256; // Max number of static channels used. Adapt it to your needs.
 cMaxDigiInBytes = 16; // Max number of digital input bytes used. Adapt it to your needs.
 cMaxBoxes = 32; // Max number of boxes supported.

// ###-> Implement timer and timer-event-handler, Interval e.g. 30ms
procedure TMainForm.tmrUpdateStaticTimer(Sender: TObject);
var
 aslValues : array [0..(cMaxTotalChannels-1)] of integer;
 aucHardwareStatus : array [0..(cMaxTotalChannels-1)] of Byte;
 aucDigiInBytes : array [0..(cMaxDigiInBytes-1)] of Byte;
 aucBoxStatus : array [0..(cMaxBoxes-1)] of Byte;
 ulUpdateCtr : Cardinal;
 tStatus : NMX_STATUS;
begin
 tmrUpdateStatic := false;

 tStatus := NMX_StaticGet32_1(pNmxHandle, @aslValues[0], cMaxTotalChannels,
 @aucHardwareStatus[0], cMaxTotalChannels,
 @aucDigiInBytes[0], cMaxDigiInBytes,
 @aucBoxStatus[0], cMaxBoxes,
 ulUpdateCtr);
 if (tStatus = NST_SUCCESS) then begin

 // New data successfully received. Display, Calculate, Store, ...
 end
 else begin

 // Error reading data. Typical error: NST_DX_TIMEOUT_COMMON due to communication breakdown.
 end;

 tmrUpdateStatic := true;
end;

C# / .Net

const int N_STATIC_CH_DISPLAY = 64; // Max number of static
channels used. Adapt it to your needs.
const int N_DIGIIO_DISPLAY = 128; // Max number of digital
input bytes used. Adapt it to your needs.
const int N_BOXES_MAX = 32; // Max number of boxes
supported.

// ###-> Implement timer and timer-event-handler, Interval e.g.
30ms

245

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

private void tmrStatic_Tick(object sender, EventArgs e)
{
 /* Disable this timer */
 tmrStatic.Enabled = false;

 Int32[] aslMeasVal = new Int32[N_STATIC_CH_DISPLAY];
 Byte[] aucHardStat = new Byte[N_STATIC_CH_DISPLAY];
 Byte[] aucDigiIn = new Byte[N_DIGIIO_DISPLAY / 8];
 Byte[] aucBoxStatus = new Byte[N_BOXES_MAX];
 UInt32 ulNUpdates = 0;
 if (cNmx.StaticGet32_1(pDevice, aslMeasVal, aucHardStat,
aucDigiIn, aucBoxStatus, ref ulNUpdates) ==
NMX_MSTATUS.SUCCESS)
 {
 // New data successfully received. Display, Calculate,
Store, ...
 }
 else
 {
 // Error reading data. Typical error:
NST_DX_TIMEOUT_COMMON due to communication breakdown.
 }

 /* Re-enable this timer */
 tmrStatic.Enabled = true;
}

4.4.4.2 Event based

Reading event based first requires registering a notification . In the

following example, message based notifications are used.

A good practice is:

Every-time the notification NMXNOTIFY_NEW_STATIC32 occurs (= a message

is received), a flag is set. In a separate timer routine, this flag is checked. If

set, static data is readout via NMX_StaticGet32_1 .

If event based data read-out is used, then a connection breakdown is

typically handled using the notification

NMXNOTIFY_FAILURE_DATA_EXCHANGE. Therefore no special error handling

is done in the following sample code.

C / C++

// Define Message. In VisualStudio, WM_USER is defined in
WinUser.h as:

176

198

246

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

// #define WM_USER 0x0400
#define WM_MESSAGE_NEW_STATIC32 (WM_USER +
NMXNOTIFY_NEW_STATIC32)

// Global declaration
BOOL bNewStatic = false;

// Global definition
#define N_STATIC_CH_DISPLAY (64) // Max number of
static channels used. Adapt it to your needs.
#define N_DIGIIO_DISPLAY (128) // Max number of
digital inputs used. Adapt it to your needs.
#define N_MAX_BOXES (32) // Max number of
boxes supported.

// ###-> Register notification, e.g. directly after connecting.
if (NMX_RegisterMessage_1(pHandle, NMXNOTIFY_NEW_STATIC32,
static_cast<HWND>(Handle.ToPointer()), WM_MESSAGE_NEW_STATIC32,
0, 0) != NST_SUCCESS) {

// Handle error
}

// ###-> Implement message handler
protected: virtual void WndProc(Message% m) override
{

/* Listen for operating system messages. */

switch (m.Msg)

{

case WM_MESSAGE_NEW_STATIC32:

bNewStatic = true;

break;

default:

/* Pass all standard messages to the GUI form. */

Form::WndProc(m);

break;

}
}

// ###-> Implement timer and timer-event-handler, Interval e.g.
30ms
private: System::Void tmrStatic_Tick(System::Object^ sender,
System::EventArgs^ e) {

// Disable this timer

tmrStatic->Enabled = false;

// Update static data, if new data available.

247

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

if (bNewStatic != false)

{

bNewStatic = false;

signed long aslMeasVal[N_STATIC_CH_DISPLAY];

unsigned char aucHardStat[N_STATIC_CH_DISPLAY];

unsigned char aucDigiIn[N_DIGIIO_DISPLAY / 8];

unsigned char aucBoxStatus[N_MAX_BOXES];

unsigned long ulNUpdates = 0;

memset(aslMeasVal, 0, sizeof(aslMeasVal));

memset(aucHardStat, 0, sizeof(aucHardStat));

memset(aucDigiIn, 0, sizeof(aucDigiIn));

memset(aucBoxStatus, 0, sizeof(aucBoxStatus));

if (NMX_StaticGet32_1(pHandleNmx, aslMeasVal,
N_STATIC_CH_DISPLAY, aucHardStat, sizeof(aucHardStat),
aucDigiIn, sizeof(aucDigiIn), aucBoxStatus,
sizeof(aucBoxStatus), &ulNUpdates) == NST_SUCCESS)

{

// New data successfully received. Display,
Calculate, Store, ...

}

}

// Re-enable this timer

tmrStatic->Enabled = true;
}

Delphi

// Define Message for "new static data available"
const WM_MESSAGE_NMX_NEWSTATIC = WM_USER + $10;
 cMaxTotalChannels = 256; // Max number of static channels used. Adapt it to your needs.
 cMaxDigiInBytes = 16; // Max number of digital input bytes used. Adapt it to your needs.
 cMaxBoxes = 32; // Max number of boxes supported.

// Declaration of class variables.
bNewStaticData : Boolean;

// Declaration of message handler. Integrate it into the class declarations.
procedure OnMessageNewStatic32(var Msg: TMessage); message WM_MESSAGE_NMX_NEWSTATIC;

// ###-> Register notification, e.g. directly after connecting.
NMX_RegisterMessage_1(pNmxHandle, NMXNOTIFY_NEW_STATIC32,
MainForm.Handle, WM_MESSAGE_NMX_NEWSTATIC, 0, 0);

// ###-> Implement message handler
procedure TMainForm.OnMessageNewStatic32(var Msg: TMessage);
begin
 bNewStaticData := true;

248

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

end;

// ###-> Implement timer and timer-event-handler, Interval e.g. 30ms
procedure TMainForm.tmrUpdateStaticTimer(Sender: TObject);
var
 aslValues : array [0..(cMaxTotalChannels-1)] of integer;
 aucHardwareStatus : array [0..(cMaxTotalChannels-1)] of Byte;
 aucDigiInBytes : array [0..(cMaxDigiInBytes-1)] of Byte;
 aucBoxStatus : array [0..(cMaxBoxes-1)] of Byte;
 ulUpdateCtr : Cardinal;
 tStatus : NMX_STATUS;
begin
 tmrUpdateStatic := false;

 if bNewData then begin
 bNewData := false;

 tStatus := NMX_StaticGet32_1(pNmxHandle, @aslValues[0], cMaxTotalChannels,
 @aucHardwareStatus[0], cMaxTotalChannels,
 @aucDigiInBytes[0], cMaxDigiInBytes,
 @aucBoxStatus[0], cMaxBoxes,
 ulUpdateCtr);
 if (tStatus = NST_SUCCESS) then begin

 // New data successfully received. Display, Calculate, Store, ...
 end;
 end;

 tmrUpdateStatic := true;
end;

C# / .Net

const int WM_MESSAGE_NEW_STATIC32 = WM_USER + 0x10; // Define
Message for "new static data available"
const int N_STATIC_CH_DISPLAY = 64; // Max number of static
channels used. Adapt it to your needs.
const int N_DIGIIO_DISPLAY = 128; // Max number of digital
input bytes used. Adapt it to your needs.
const int N_BOXES_MAX = 32; // Max number of boxes
supported.

// Global declaration
Boolean bNewStatic = false;

// ###-> Register notification, e.g. directly after connecting.
if (cNmx.RegisterMessage_1(pDevice,
NMX_NOTIFICATION.NEW_STATIC32, Handle, WM_MESSAGE_NEW_STATIC32,
0, 0) != NMX_MSTATUS.SUCCESS)
{
 // Handle error
}

// ###-> Implement message handler

249

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

protected override void WndProc(ref Message m)
{
 // Listen for operating system messages.
 switch (m.Msg)
 {
 case WM_MESSAGE_NEW_STATIC32:
 bNewStatic = true;
 break;

 default:
 /* Pass all standard messages to the GUI form. */
 base.WndProc(ref m);
 break;
 }
}

// ###-> Implement timer and timer-event-handler, Interval e.g.
30ms
private void tmrStatic_Tick(object sender, EventArgs e)
{
 /* Disable this timer */
 tmrStatic.Enabled = false;

 if (bNewStatic != false)
 {
 bNewStatic = false;

 Int32[] aslMeasVal = new Int32[N_STATIC_CH_DISPLAY];
 Byte[] aucHardStat = new Byte[N_STATIC_CH_DISPLAY];
 Byte[] aucDigiIn = new Byte[N_DIGIIO_DISPLAY / 8];
 Byte[] aucBoxStatus = new Byte[N_BOXES_MAX];
 UInt32 ulNUpdates = 0;
 if (cNmx.StaticGet32_1(pDevice, aslMeasVal,
aucHardStat, aucDigiIn, aucBoxStatus, ref ulNUpdates) ==
NMX_MSTATUS.SUCCESS)
 {
 // New data successfully received. Display,
Calculate, Store, ...
 }
 else
 {
 // Error reading data. Typical error:
NST_DX_TIMEOUT_COMMON due to communication breakdown.
 }
 }

 /* Re-enable this timer */
 tmrStatic.Enabled = true;
}

250

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

4.4.5 Sampling

Using sampling, data is acquired in realtime (see also chapter "Static vs.

Sampling "). There are two types of sampling:

· Time-limited sampling, and

· Endless sampling.

Both of them use the same buffering technique. The sampled data is first

stored in the internal buffer(s) of the measurement system in realtime. For the

data transfer to the PC, there are no realtime requirements.

Time-limited sampling provides more opportunities in regard of the

measurement speed and the amount of sampled data. Full speed is

supported using all measurement channels.

As its name says, it does not run all the time. Instead, it is started before each

measurement cycle. It then runs until the measurement cycle is finished. The

typical duration is a few seconds.

Endless sampling provides more flexibility. After starting, the sampled data

is available endlessly, similar to an endless data stream.

The maximum data rate depends on the amount of sampled data (= amount

of measurement channels used). However, for many applications, it is fast

enough. Consult the users manual of the measurement system for more

information about the maximum sampling rate. Typically "1000 Samples/s

140

251

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

per measurement channel" or more are possible with many measurement

channels.

Regarding the integration into the measurement software, both sampling

types are similar. The same function calls are used.

Fundamentals are:

· Sampling does not care about measurement boxes. It does not matter

whether a single or multiple boxes are used. All measurement channels and

digital in-/outputs across the whole measurement system can be used.

The boxes are synchronized. The Master-Box collects all data from the

Slave-Boxes, sorts it and sends it to the NMX DLL. There it is stored in a

table. See the chapter "Reading sampled data " for more details.

· At each sampling point, the values of all sampling elements are

buffered/stored together with a sample counter.

· As the first step, the sampling elements have to be defined. A sampling

element can be a measurement channel, a digital input byte or a digital

output byte.

It is possible to add all of them or only a selection.

· The next step is preparing the sampling.

Here the sample rate (-> sample period) is defined. Further it is defined,

whether it is a time-limited or an endless sampling.

· Then the sampling can be started.

· The data transfer to the PC begins immediately.

These steps are also shown in the following diagram:

267

252

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

As visible in the diagram, the sampling elements only need to be defined

once, if it is started repeatedly.

4.4.5.1 Start endless time-based sampling

For the following sample code, endless sampling with a system having 32

measurement channels and 64 digital in-/outputs is shown.

64 digital in-/outputs means there are 8 bytes each.

The sample rate shall be 1000 Samples/s.

The DLL-internal buffer shall be large enough to buffer for 5 seconds, which

equals 5000 samples.

C / C++: Start with all measurement channels and digital I/Os

unsigned long ulNElements = 0;

// ###-> 1. Reset list of sampling elements
if (NMX_Sampling_Reset_1(pHandle) == NST_SUCCESS) {

// List of sampling elements has been reset successfully.
}
else {

// Failed resetting the list of sampling elements.

// Do some error handling.

return;
}

253

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

// ###-> 2/3. Add sampling elements
if ((NMX_Sampling_AddChannelsAll_1(pHandle, &ulNElements) ==
NST_SUCCESS) &&
 (NMX_Sampling_AddDigiInAll_1(pHandle, &ulNElements) ==
NST_SUCCESS) &&
 (NMX_Sampling_AddDigiOutAll_1(pHandle, &ulNElements) ==
NST_SUCCESS)) {

// Successfully added all sampling elements
}
else {

// Failed adding sampling elements

// Do some error handling.

return;
}

// ###-> 4. Prepare sampling with 1000 Samples/s (= 1000µs
sample period)
if (NMX_Sampling_PrepareTime_1(pHandle, 1000/*µs*/,
5000/*Buffer-Size*/, 0/*0=NoLimit*/) == NST_SUCCESS) {

// Sampling successfully prepared
}
else {

// Failed preparing sampling

// Do some error handling.

return;
}

// ###-> 5. Start sampling
if (NMX_Sampling_Start_1(pHandle) == NST_SUCCESS) {

// Start successful.
// Reading sampled data should start now/soon to avoid a

buffer overflow.
}
else {

// Failed starting sampling

// Do some error handling.

return;
}

C / C++: Start with a selection of measurement channels and digital

inputs

unsigned long ulNElements = 0;

254

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

// ###-> 1. Reset list of sampling elements
if (NMX_Sampling_Reset_1(pHandle) == NST_SUCCESS) {

// List of sampling elements has been reset successfully.
}
else {

// Failed resetting the list of sampling elements.

// Do some error handling.

return;
}

// ###-> 2/3. Add measurement channels 0, 5 & 17
// Add digital input byte 0
if ((NMX_Sampling_AddChannel_1(pHandle, 0, &ulNElements) ==
NST_SUCCESS) &&
 (NMX_Sampling_AddChannel_1(pHandle, 5, &ulNElements) ==
NST_SUCCESS) &&
 (NMX_Sampling_AddChannel_1(pHandle, 17, &ulNElements) ==
NST_SUCCESS) &&
 (NMX_Sampling_AddDigiInByte_1(pHandle, 0, &ulNElements) ==
NST_SUCCESS)) {

// Successfully added selected sampling elements
}
else {

// Failed adding sampling elements

// Do some error handling.

return;
}

// ###-> 4. Prepare sampling with 1000 Samples/s (= 1000µs
sample period)
if (NMX_Sampling_PrepareTime_1(pHandle, 1000/*µs*/,
5000/*Buffer-Size*/, 0/*0=NoLimit*/) == NST_SUCCESS) {

// Sampling successfully prepared
}
else {

// Failed preparing sampling

// Do some error handling.

return;
}

// ###-> 5. Start sampling
if (NMX_Sampling_Start_1(pHandle) == NST_SUCCESS) {

// Start successful.

// Reading sampled data should start now/soon to avoid a
buffer overflow.
}
else {

255

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

// Failed starting sampling

// Do some error handling.

return;
}

Delphi: Start with all measurement channels and digital I/Os

// ###-> 1. Reset list of sampling elements
if cNmx.Sampling_Reset_1(pHandleNmx) = NST_SUCCESS then begin

// List of sampling elements has been reset successfully.
end
else begin

// Failed resetting the list of sampling elements.
// Do some error handling.
exit;

end;

// ###-> 2/3. Add sampling elements
if (cNmx.Sampling_AddChannelsAll_1(pHandleNmx, ulNElements) = NST_SUCCESS) And

(cNmx.Sampling_AddDigiInAll_1(pHandleNmx, ulNElements) = NST_SUCCESS) And
(cNmx.Sampling_AddDigiOutAll_1(pHandleNmx, ulNElements) = NST_SUCCESS) then begin
// Successfully added all sampling elements

end
else begin

// Failed adding sampling elements
// Do some error handling.
exit;

end;

// ###-> 4. Prepare sampling with 1000 Samples/s (= 1000µs sample period)
if cNmx.Sampling_PrepareTime_1(pHandleNmx, 1000{µs}, 5000{BufferSize}, 0{0=NoLimit}) = NST_SUCCESS then begin

// Sampling successfully prepared
end
else begin

// Failed preparing sampling
// Do some error handling.
exit;

end;

// ###-> 5. Start sampling
if cNmx.Sampling_Start_1(pHandleNmx) = NST_SUCCESS then begin

// Start successful.
// Reading sampled data should start now/soon to avoid a buffer overflow.

end
else begin

// Failed starting sampling
// Do some error handling.
exit;

end;

256

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Delphi: Start with a selection of measurement channels and digital

inputs

// ###-> 1. Reset list of sampling elements
if cNmx.Sampling_Reset_1(pHandleNmx) = NST_SUCCESS then begin

// List of sampling elements has been reset successfully.
end
else begin

// Failed resetting the list of sampling elements.
// Do some error handling.
exit;

end;

// ###-> 2/3. Add sampling elements
if (cNmx.Sampling_AddChannel_1(pHandleNmx, 0, ulNTotal) = NST_SUCCESS) And

(cNmx.Sampling_AddChannel_1(pHandleNmx, 5, ulNTotal) = NST_SUCCESS) And
(cNmx.Sampling_AddChannel_1(pHandleNmx, 17, ulNTotal) = NST_SUCCESS) And
(cNmx.Sampling_AddDigiInByte_1(pHandleNmx, 0, ulNTotal) = NST_SUCCESS) then begin
// Successfully added selected sampling elements

end
else begin

// Failed adding sampling elements
// Do some error handling.
exit;

end;

// ###-> 4. Prepare sampling with 1000 Samples/s (= 1000µs sample period)
if cNmx.Sampling_PrepareTime_1(pHandleNmx, 1000{µs}, 5000{BufferSize}, 0{0=NoLimit}) = NST_SUCCESS then begin

// Sampling successfully prepared
end
else begin

// Failed preparing sampling
// Do some error handling.
exit;

end;

// ###-> 5. Start sampling
if cNmx.Sampling_Start_1(pHandleNmx) = NST_SUCCESS then begin

// Start successful.
// Reading sampled data should start now/soon to avoid a buffer overflow.

end
else begin

// Failed starting sampling
// Do some error handling.
exit;

end;

C# / .Net: Start with all measurement channels and digital I/Os

UInt32 ulNElements = 0;

257

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

// ###-> 1. Reset list of sampling elements
if (cNmx.Sampling_Reset_1(pDevice) == NMX_MSTATUS.SUCCESS) {

// List of sampling elements has been reset successfully.
}
else {

// Failed resetting the list of sampling elements.

// Do some error handling.

return;
}

// ###-> 2/3. Add sampling elements
if ((cNmx.Sampling_AddChannelsAll_1(pDevice, ref ulNElements)
== NMX_MSTATUS.SUCCESS) &&
 (cNmx.Sampling_AddDigiInAll_1(pDevice, ref ulNElements) ==
NMX_MSTATUS.SUCCESS) &&
 (cNmx.Sampling_AddDigiOutAll_1(pDevice, ref ulNElements)
== NMX_MSTATUS.SUCCESS)) {

// Successfully added all sampling elements
}
else {

// Failed adding sampling elements

// Do some error handling.

return;
}

// ###-> 4. Prepare sampling with 1000 Samples/s (= 1000µs
sample period)
if (cNmx.Sampling_PrepareTime_1(pDevice, 1000/*µs*/,
5000/*Buffer-Size*/, 0/*0=NoLimit*/) == NMX_MSTATUS.SUCCESS)

// Sampling successfully prepared
}
else {

// Failed preparing sampling

// Do some error handling.

return;
}

// ###-> 5. Start sampling
if (cNmx.Sampling_Start_1(pDevice) == NMX_MSTATUS.SUCCESS) {

// Start successful.
// Reading sampled data should start now/soon to avoid a

buffer overflow.
}
else {

// Failed starting sampling

// Do some error handling.

return;

258

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

}

C# / .Net: Start with a selection of measurement channels and digital

inputs

UInt32 ulNElements = 0;

// ###-> 1. Reset list of sampling elements
if (cNmx.Sampling_Reset_1(pDevice) == NMX_MSTATUS.SUCCESS) {

// List of sampling elements has been reset successfully.
}
else {

// Failed resetting the list of sampling elements.

// Do some error handling.

return;
}

// ###-> 2/3. Add sampling elements
if ((cNmx.Sampling_AddChannel_1(pDevice, 0, ref ulNElements)
== NMX_MSTATUS.SUCCESS) &&
 (cNmx.Sampling_AddChannel_1(pDevice, 5, ref ulNElements)
== NMX_MSTATUS.SUCCESS) &&
 (cNmx.Sampling_AddChannel_1(pDevice, 17, ref ulNElements)
== NMX_MSTATUS.SUCCESS) &&
 (cNmx.Sampling_AddDigiInByte_1(pDevice, 0, ref
ulNElements) != NMX_MSTATUS.SUCCESS)) {

// Successfully added all sampling elements
}
else {

// Failed adding sampling elements

// Do some error handling.

return;
}

// ###-> 4. Prepare sampling with 1000 Samples/s (= 1000µs
sample period)
if (cNmx.Sampling_PrepareTime_1(pDevice, 1000/*µs*/,
5000/*Buffer-Size*/, 0/*0=NoLimit*/) == NMX_MSTATUS.SUCCESS)

// Sampling successfully prepared
}
else {

// Failed preparing sampling

// Do some error handling.

return;
}

259

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

// ###-> 5. Start sampling
if (cNmx.Sampling_Start_1(pDevice) == NMX_MSTATUS.SUCCESS) {

// Start successful.
// Reading sampled data should start now/soon to avoid a

buffer overflow.
}
else {

// Failed starting sampling

// Do some error handling.

return;
}

4.4.5.2 Start time-limited sampling

For the following sample code, time-limited sampling with a system having

32 measurement channels and 64 digital in-/outputs is shown.

64 digital in-/outputs means there are 8 bytes each.

The sample rate shall be 1000 Samples/s.

The maximum duration shall be 10 seconds, which equals 10000 Samples.

The DLL-internal buffer shall be large enough to store all sampled data.

C / C++: Start with all measurement channels and digital I/Os

unsigned long ulNElements = 0;

// ###-> 1. Reset list of sampling elements
if (NMX_Sampling_Reset_1(pHandle) == NST_SUCCESS) {

// List of sampling elements has been reset successfully.
}
else {

// Failed resetting the list of sampling elements.

// Do some error handling.

return;
}

// ###-> 2/3. Add sampling elements
if ((NMX_Sampling_AddChannelsAll_1(pHandle, &ulNElements) ==
NST_SUCCESS) &&
 (NMX_Sampling_AddDigiInAll_1(pHandle, &ulNElements) ==
NST_SUCCESS) &&
 (NMX_Sampling_AddDigiOutAll_1(pHandle, &ulNElements) ==
NST_SUCCESS)) {

// Successfully added all sampling elements
}

260

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

else {

// Failed adding sampling elements

// Do some error handling.

return;
}

// ###-> 4. Prepare sampling with 1000 Samples/s (= 1000µs
sample period)
if (NMX_Sampling_PrepareTime_1(pHandle, 1000/*µs*/, 10000,
10000/*Samples*/) == NST_SUCCESS) {

// Sampling successfully prepared
}
else {

// Failed preparing sampling

// Do some error handling.

return;
}

// ###-> 5. Start sampling
if (NMX_Sampling_Start_1(pHandleNmx) == NST_SUCCESS) {

// Start successful.
}
else {

// Failed starting sampling

// Do some error handling.

return;
}

C / C++: Start with a selection of measurement channels and digital

inputs

unsigned long ulNElements = 0;

// ###-> 1. Reset list of sampling elements
if (NMX_Sampling_Reset_1(pHandle) == NST_SUCCESS) {

// List of sampling elements has been reset successfully.
}
else {

// Failed resetting the list of sampling elements.

// Do some error handling.

return;
}

// ###-> 2/3. Add measurement channels 0, 5 & 17

261

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

// Add digital input byte 0
if ((NMX_Sampling_AddChannel_1(pHandle, 0, &ulNElements) ==
NST_SUCCESS) &&
 (NMX_Sampling_AddChannel_1(pHandle, 5, &ulNElements) ==
NST_SUCCESS) &&
 (NMX_Sampling_AddChannel_1(pHandle, 17, &ulNElements) ==
NST_SUCCESS) &&
 (NMX_Sampling_AddDigiInByte_1(pHandle, 0, &ulNElements) ==
NST_SUCCESS)) {

// Successfully added selected sampling elements
}
else {

// Failed adding sampling elements

// Do some error handling.

return;
}

// ###-> 4. Prepare sampling with 1000 Samples/s (= 1000µs
sample period)
if (NMX_Sampling_PrepareTime_1(pHandle, 1000/*µs*/, 10000,
10000/*Samples*/) == NST_SUCCESS) {

// Sampling successfully prepared
}
else {

// Failed preparing sampling

// Do some error handling.

return;
}

// ###-> 5. Start sampling
if (NMX_Sampling_Start_1(pHandleNmx) == NST_SUCCESS) {

// Start successful.
}
else {

// Failed starting sampling

// Do some error handling.

return;
}

Delphi: Start with all measurement channels and digital I/Os

// ###-> 1. Reset list of sampling elements
if cNmx.Sampling_Reset_1(pHandleNmx) = NST_SUCCESS then begin

// List of sampling elements has been reset successfully.
end
else begin

// Failed resetting the list of sampling elements.
// Do some error handling.

262

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

exit;
end;

// ###-> 2/3. Add sampling elements
if (cNmx.Sampling_AddChannelsAll_1(pHandleNmx, ulNElements) = NST_SUCCESS) And

(cNmx.Sampling_AddDigiInAll_1(pHandleNmx, ulNElements) = NST_SUCCESS) And
(cNmx.Sampling_AddDigiOutAll_1(pHandleNmx, ulNElements) = NST_SUCCESS) then begin
// Successfully added all sampling elements

end
else begin

// Failed adding sampling elements
// Do some error handling.
exit;

end;

// ###-> 4. Prepare sampling with 1000 Samples/s (= 1000µs sample period)
if cNmx.Sampling_PrepareTime_1(pHandleNmx, 1000{µs}, 10000, 10000{Samples}) = NST_SUCCESS then begin

// Sampling successfully prepared
end
else begin

// Failed preparing sampling
// Do some error handling.
exit;

end;

// ###-> 5. Start sampling
if cNmx.Sampling_Start_1(pHandleNmx) = NST_SUCCESS then begin

// Start successful.
// Reading sampled data should start now/soon to avoid a buffer overflow.

end
else begin

// Failed starting sampling
// Do some error handling.
exit;

end;

Delphi: Start with a selection of measurement channels and digital

inputs

// ###-> 1. Reset list of sampling elements
if cNmx.Sampling_Reset_1(pHandleNmx) = NST_SUCCESS then begin

// List of sampling elements has been reset successfully.
end
else begin

// Failed resetting the list of sampling elements.
// Do some error handling.
exit;

end;

// ###-> 2/3. Add sampling elements
if (cNmx.Sampling_AddChannel_1(pHandleNmx, 0, ulNTotal) = NST_SUCCESS) And

263

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

(cNmx.Sampling_AddChannel_1(pHandleNmx, 5, ulNTotal) = NST_SUCCESS) And
(cNmx.Sampling_AddChannel_1(pHandleNmx, 17, ulNTotal) = NST_SUCCESS) And
(cNmx.Sampling_AddDigiInByte_1(pHandleNmx, 0, ulNTotal) = NST_SUCCESS) then begin
// Successfully added selected sampling elements

end
else begin

// Failed adding sampling elements
// Do some error handling.
exit;

end;

// ###-> 4. Prepare sampling with 1000 Samples/s (= 1000µs sample period)
if cNmx.Sampling_PrepareTime_1(pHandleNmx, 1000{µs}, 10000, 10000{Samples}) = NST_SUCCESS then begin

// Sampling successfully prepared
end
else begin

// Failed preparing sampling
// Do some error handling.
exit;

end;

// ###-> 5. Start sampling
if cNmx.Sampling_Start_1(pHandleNmx) = NST_SUCCESS then begin

// Start successful.
// Reading sampled data should start now/soon to avoid a buffer overflow.

end
else begin

// Failed starting sampling
// Do some error handling.
exit;

end;

C# / .Net: Start with all measurement channels and digital I/Os

UInt32 ulNElements = 0;

// ###-> 1. Reset list of sampling elements
if (cNmx.Sampling_Reset_1(pDevice) == NMX_MSTATUS.SUCCESS) {

// List of sampling elements has been reset successfully.
}
else {

// Failed resetting the list of sampling elements.

// Do some error handling.

return;
}

// ###-> 2/3. Add sampling elements
if ((cNmx.Sampling_AddChannelsAll_1(pDevice, ref ulNElements)
== NMX_MSTATUS.SUCCESS) &&

264

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

 (cNmx.Sampling_AddDigiInAll_1(pDevice, ref ulNElements) ==
NMX_MSTATUS.SUCCESS) &&
 (cNmx.Sampling_AddDigiOutAll_1(pDevice, ref ulNElements)
== NMX_MSTATUS.SUCCESS)) {

// Successfully added all sampling elements
}
else {

// Failed adding sampling elements

// Do some error handling.

return;
}

// ###-> 4. Prepare sampling with 1000 Samples/s (= 1000µs
sample period)
if (cNmx.Sampling_PrepareTime_1(pDevice, 1000/*µs*/, 10000,
10000/*Samples*/) == NMX_MSTATUS.SUCCESS)

// Sampling successfully prepared
}
else {

// Failed preparing sampling

// Do some error handling.

return;
}

// ###-> 5. Start sampling
if (cNmx.Sampling_Start_1(pDevice) == NMX_MSTATUS.SUCCESS) {

// Start successful.
// Reading sampled data should start now/soon to avoid a

buffer overflow.
}
else {

// Failed starting sampling

// Do some error handling.

return;
}

C# / .Net: Start with a selection of measurement channels and digital

inputs

UInt32 ulNElements = 0;

// ###-> 1. Reset list of sampling elements
if (cNmx.Sampling_Reset_1(pDevice) == NMX_MSTATUS.SUCCESS) {

// List of sampling elements has been reset successfully.
}
else {

265

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

// Failed resetting the list of sampling elements.

// Do some error handling.

return;
}

// ###-> 2/3. Add sampling elements
if ((cNmx.Sampling_AddChannel_1(pDevice, 0, ref ulNElements)
== NMX_MSTATUS.SUCCESS) &&
 (cNmx.Sampling_AddChannel_1(pDevice, 5, ref ulNElements)
== NMX_MSTATUS.SUCCESS) &&
 (cNmx.Sampling_AddChannel_1(pDevice, 17, ref ulNElements)
== NMX_MSTATUS.SUCCESS) &&
 (cNmx.Sampling_AddDigiInByte_1(pDevice, 0, ref
ulNElements) != NMX_MSTATUS.SUCCESS)) {

// Successfully added all sampling elements
}
else {

// Failed adding sampling elements

// Do some error handling.

return;
}

// ###-> 4. Prepare sampling with 1000 Samples/s (= 1000µs
sample period)
if (cNmx.Sampling_PrepareTime_1(pDevice, 1000/*µs*/, 10000,
10000/*Samples*/) == NMX_MSTATUS.SUCCESS)

// Sampling successfully prepared
}
else {

// Failed preparing sampling

// Do some error handling.

return;
}

// ###-> 5. Start sampling
if (cNmx.Sampling_Start_1(pDevice) == NMX_MSTATUS.SUCCESS) {

// Start successful.
// Reading sampled data should start now/soon to avoid a

buffer overflow.
}
else {

// Failed starting sampling

// Do some error handling.

return;
}

266

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

4.4.5.3 Stop sampling

Stopping sampling is optional. It can be used to:

· Stopp an endless sampling.

· Stopp a time-limited sampling earlier than defined in the preparation step.

Example: Sampling has been prepared with a length of 10 seconds. After

6.5 seconds the measurement is finished. Sampling shall now be stopped.

Inside the NMX DLL / measurement system, the maximum number of

samples is stored during the preparation phase (see

NMX_Sampling_PrepareTime_1) . This value can also be read-out via

NMX_Sampling_GetStatus_1 .

By stopping sampling, this value is adjusted to the new end of sampling.

Example: If sampling with 1000 samples/s has been prepared and started for

a maximum duration of 10 seconds, the maximum number of samples is

10000. By calling the stop function after 6.5 seconds, this value is adjusted to

6500.

C / C++

// ###-> Stop sampling
if (NMX_Sampling_Stop_1(pHandle) == NST_SUCCESS) {

// Successfully stopped
}
else {

// Failed stopping sampling

// Do some error handling.
}

Delphi

if cNmx.Sampling_Stop_1(pHandleNmx) = NST_SUCCESS then begin
// Successfully stopped

end
else begin

// Failed stopping sampling
// Do some error handling.

end;

C# / .Net

if (cNmx.Sampling_Stop_1(pDevice) == NMX_MSTATUS.SUCCESS)

218

226

267

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

{

// Successfully stopped
}
else
{

// Failed stopping sampling

// Do some error handling.
}

4.4.5.4 Reading sampled data

As soon as sampling has been started, data can be read-out.

For time-limited sampling, it is possible to wait until the measurement is

finished and then read the data as a single block.

For endless-sampling, data must be read-out cyclically to ensure that the

internal buffer of the NMX DLL does not overflow.

Sampled data is provided by the NMX DLL in the form of a table, or

technically speaking in the form of a 2-dimensional array. Thereby:

· the rows are the samples

· and the columns are the sampling elements.

The following table provides an example:

The rows and columns are indexed as follows:

268

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

There are two possibilities for reading this data: column-wise and row-

wise . None of them is generally better:

· Column-wise typically has a better performance, since less function calls

are required. However, in most systems/applications, this is not even

measurable.

It could be the preferred option for time-limited sampling, if all samples

shall be read-out as a whole after the sampling is finished.

· Row-wise could be a little bit easier to use, since there is no need to

synchronize the readout of multiple columns. This applies especially to

endless sampling.

There is no possibility to read the whole table as a 2-dimensional array, since

this is known to be a bad programming style.

Please note that all data is provided as 32 Bit values. For more information

please read the chapter "Data Types ".

4.4.5.4.1 Read Column-Wise

Single block

For time-limited sampling, the easiest way is reading all data together after

the measurement is finished. In this case, the function

NMX_Sampling_ReadColumn32_1 must be called one-time per sampling

element. The following example shows this visually:

268

273

148

221

269

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

According to this example, NMX_Sampling_ReadColumn32_1 must be

called 6 times. The function/return parameters are as follows:

Function call ulMaxSample

s

ulElementNo pulSamplesC

opied

pudNoFirstSa

mple

1 0 22 0

2 1 22 0

3 2 22 0

4 3 22 0

5 4 22 0

6 5 22 0

The parameter ulDoNotDelete normally is 0. If you need to read all samples

again, set it to 1.

Multiple blocks

Another possibility is reading data in small blocks.

For endless sampling, this is essential.

For time-limited sampling this can be useful, since it allows

analysing/displaying data, while sampling is active.

The following example shows visually, how the data from the example above

is read in 3 blocks:

221

270

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

According to this example, NMX_Sampling_ReadColumn32_1 must be

called 18 times. The function/return parameters are as follows:

Function call ulMaxSample

s

ulElementNo pulSamplesC

opied

pudNoFirstSa

mple

1 5 0 5 0

2 5 1 5 0

3 5 2 5 0

4 5 3 5 0

5 5 4 5 0

6 5 5 5 0

7 9 0 9 5

8 9 1 9 5

9 9 2 9 5

10 9 3 9 5

11 9 4 9 5

12 9 5 9 5

13 0 8 14

14 1 8 14

15 2 8 14

16 3 8 14

221

271

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

17 4 8 14

18 5 8 14

The parameter ulDoNotDelete must be 0.

C / C++

// ###-> Get Number of Rows and Columns.
unsigned long long udSamplesReceived = 0; // --> Rows
unsigned long ulNSamplingElements = 0; // --> Columns
if (NMX_Sampling_GetStatus_1(pHandleNmx, NULL,
&ulNSamplingElements, &udSamplesReceived, NULL) != NST_SUCCESS)
{

// Error reading sampling status. Do some error handling.

return;
}

// ###-> Create table/array for sampled data
signed long **aaslSamples = new signed
long*[ulNSamplingElements];
unsigned long ulSamplesCopied = 0;

for (unsigned long ulColumn = 0; ulColumn <
ulNSamplingElements; ulColumn++)
{

// Create array for this column

aaslSamples[ulColumn] = new signed long[(unsigned long)
udSamplesReceived];

for (unsigned long ulRow = 0; ulRow < udSamplesReceived;
ulRow++) {

aaslSamples[ulColumn][ulRow] = -2147483647;

}

// ###-> Read sampled data column-wise

if (NMX_Sampling_ReadColumn32_1(pHandle,
aaslSamples[ulColumn], (unsigned long)udSamplesReceived,
ulColumn, 0, &ulSamplesCopied, NULL) != NST_SUCCESS) {

// Error reading sampled data. Do some error
handling.

return;

}
}

// ###-> Now the data can be processed.
// First array dimension is columns / sampling elements
// Second array dimension is rows / samples

272

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

// ###-> Don't forget to delete the array.
delete aaslSamples;

Delphi

var
 ucStatus: byte;
 udSamplesReceived: uint64;
 udSamplesMax: uint64;
 ulNElements: cardinal;
 aaslSamples: packed array of array of integer;
 ulColumn: cardinal;
 ulSamplesCopied: cardinal;
 udNoFirstSample: uint64;
begin
 ucStatus := 0;
 udSamplesReceived := 0;
 udSamplesMax := 0;
 ulNElements := 0;

 // ###-> Get Number of Rows and Columns.
 if cNmx.Sampling_GetStatus_1(pHandleNmx, ucStatus, ulNElements, udSamplesReceived, udSamplesMax) <> NST_SUCCESS then begin

// Error reading sampling status. Do some error handling.
exit;

 end;

 // ###-> Create table/array for sampled data
 SetLength(aaslSamples, ulNElements);
 for ulColumn := 0 to ulNElements-1 do begin
 SetLength(aaslSamples[ulColumn], udSamplesReceived);

 if cNmx.Sampling_ReadColumn32_1(pHandleNmx,
 @aaslSamples[ulColumn][0],
 Length(aaslSamples[0]),
 ulColumn,
 1,
 ulSamplesCopied,
 udNoFirstSample) <> NST_SUCCESS then begin
 // Error reading sampled data. Do some error handling.
 end;
 end;

 // ###-> Now the data can be processed.
 // First array dimension is columns / sampling elements
 // Second array dimension is rows / samples
end;

C# / .Net

public struct TSampleColumn

273

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

{
 public Int32[] aslRows;
}

Byte ucStatus = 0;
UInt32 ulNElements = 0;
UInt64 udSamplesReceived = 0;
UInt64 udMaxSamples = 0;
UInt32 ulSamplesCopied = 0;

/* Get number of samples, which are available. */
cNmx.Sampling_GetStatus_1(pDevice, ref ucStatus, ref
ulNElements, ref udSamplesReceived, ref udMaxSamples);

/* Create arrays for sampling data and read it from DLL */
TSampleColumn[] aaslSData = new TSampleColumn[ulNElements];
for (UInt32 ulColumn = 0; ulColumn < ulNElements; ulColumn++)
{
 aaslSData[ulColumn].aslRows = new Int32[udSamplesReceived];
 for (Int32 I = 0; I < aaslSData[ulColumn].aslRows.Length;
I++) {
 aaslSData[ulColumn].aslRows[I] = Int32.MaxValue;
 }

 /* Feel free to do some more error handling here, e.g.
check ulSamplesCopied and checking the function return code. */
 cNmx.Sampling_ReadColumn32_1(pDevice,
 aaslSData[ulColumn].aslRows,
 0,
 (UInt32)
aaslSData[ulColumn].aslRows.Length,
 ulColumn,
 1,
 ref ulSamplesCopied,
 ref udMaxSamples);
}

4.4.5.4.2 Read Row-Wise

Reading row-wise is quite simple. The function

NMX_Sampling_ReadRow32_1 is called for each sample and provides the

data for all sampling elements. The following example shows this visually.

224

274

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

According to this example, NMX_Sampling_ReadRow32_1 must be called

9 times. The function/return parameters are as follows:

Function call ulMaxSamples pulSamplesCopie

d

pudSampleNo

1 6 0

2 6 1

3 6 2

4 6 3

5 6 4

6 6 5

7 6 6

8 6 7

9 6 8

C / C++

// ###-> Get Number of Sampling elements. This could be done
one-time after starting sampling, since this value does not
change.
unsigned long ulNSamplingElements = 0; // --> Columns
if (NMX_Sampling_GetStatus_1(pHandleNmx, NULL,
&ulNSamplingElements, NULL, NULL) != NST_SUCCESS) {

// Error reading sampling status. Do some error handling.

return;
}

// ###-> Read newest data. This code could for example be done
after the notification NMXNOTIFY_SAMPLING_NEW_DATA.
signed long *aslSamples = new signed long[ulNSamplingElements];
unsigned long ulSamplesCopied = 0;
unsigned long long udSampleNo = 0;
NMX_STATUS tResult = NST_SUCCESS;

224

275

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

do {

tResult = NMX_Sampling_ReadRow32_1(pHandleNmx,
aslSamples, ulNSamplingElements, &ulSamplesCopied,
&udSampleNo);

if (tResult == NST_SUCCESS) {

// New row has been read-out. Use the data, e.g.
copy it to your own array or ring-buffer.

}

else if (tResult == NST_SAMPLING_NO_DATA_AVAILABLE) {

// No more data available. Wait until new data has
arrived.

break;

}

else {

// An error occurred. Do some error handling.

break;

}
} while (1);

Delphi

var
 ucStatus: byte;
 udSamplesReceived: uint64;
 udSamplesMax: uint64;
 ulNElements: cardinal;
 aslSamples: packed array of integer;
 ulSamplesCopied: cardinal;
 udSampleNo: uint64;
 tResult: NMX_STATUS;
begin
 ucStatus := 0;
 udSamplesReceived := 0;
 udSamplesMax := 0;
 ulNElements := 0;

 // ###-> Get Number of Sampling elements. This could be done one-time after starting sampling, since this value does not change.
 if cNmx.Sampling_GetStatus_1(pHandleNmx, ucStatus, ulNElements, udSamplesReceived, udSamplesMax) <> NST_SUCCESS then begin

// Error reading sampling number of sampling elements. Do some error handling.
exit;

 end;

 // ###-> Read newest data. This code could for example be done after the notification NMXNOTIFY_SAMPLING_NEW_DATA.
 SetLength(aslSamples, ulNElements);
 while (true) do begin
 tResult := cNmx.Sampling_ReadRow32_1(pHandleNmx, aslSamples, Length(aslSamples), ulSamplesCopied, udNoFirstSample);
 if tResult = NST_SUCCESS then begin
 // New row has been read-out. Use the data, e.g. copy it to your own array or ring-buffer.
 end
 else if tResult = NST_SAMPLING_NO_DATA_AVAILABLE then begin
 // No more data available. Wait until new data has arrived.
 break;

276

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

 end
 else begin
 // Error reading sampled data. Do some error handling.
 break;
 end;
 end;
end;

C# / .Net

Byte ucStatus = 0;
UInt32 ulNElements = 0;
UInt64 udSamplesReceived = 0;
UInt64 udMaxSamples = 0;
UInt32 ulSamplesCopied = 0;

/* Get number of samples, which are available. */
cNmx.Sampling_GetStatus_1(pDevice, ref ucStatus, ref
ulNElements, ref udSamplesReceived, ref udMaxSamples);

/* Create arrays for sampling data and read it from DLL */
Int32[] aslValues = new Int32[ulNElements];

while (true)
{
 for (Int32 I = 0; I < aslValues.Length; I++) aslValues[I] =
Int32.MaxValue;

 /* Read samples from DLL into local array */
 UInt32 ulSamplesCopied = 0;
 NMX_MSTATUS tStatus = cNmx.Sampling_ReadRow32_1(pDevice,
aslValues, ref ulSamplesCopied, ref udNoFirstSample);
 if (tStatus == NMX_MSTATUS.SUCCESS)
 {
 // New row has been read-out. Use the data, e.g. copy
it to your own array or ring-buffer.
 }
 else if (tStatus == NMX_MSTATUS.SAMPLING_NO_DATA_AVAILABLE)
 {
 // No more data available. Wait until new data has
arrived.
 break;
 }
 else
 {
 // An error occurred. Do some error handling.
 break;
 }
}

277

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

4.4.5.5 Get sampling status

After sampling has been started, it is common practice to check its current

status. There are two possibilities doing this, whereas it may make sense

using both of this in parallel:

· By polling a function call , the current status and the current sample

counter can be read-out from the NMX DLL.

· Sampling-Notifications can be used to get informed about certain

events.

4.4.5.5.1 Poll sampling status

Polling the sampling status is done by calling the function

NMX_Sampling_GetStatus_1 . The following information is provided:

· Current sampling status (e.g. running, finished, error).

· Number of sampling elements. This is the number of measurement

channels + digitale I/O bytes, which have been selected for sampling. After

sampling has been prepared, this value remains static.

· The number of samples, which have already been received by the NMX

DLL.

· The maximum number of samples, which will be recorded. For endless

measurement, this is the maximum value for the respective data type.

C / C++

unsigned char ucStatus = 0;
unsigned long ulNElements = 0;
unsigned long long udSamplesReceived = 0;
unsigned long long udSamplesMax = 0;
if (clNmx->Sampling_GetStatus_1(pHandleNmx, &ucStatus,
&ulNElements, &udSamplesReceived, &udSamplesMax) ==
NST_SUCCESS) {

/* Use status data, e.g. display it on the GUI. */

}

Delphi

procedure TForm1.tmrSamplingTimer(Sender: TObject);
var
 ucStatus: byte;
 udSamplesReceived: uint64;
 udSamplesMax: uint64;

277

278

226

278

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

 ulNElements: cardinal;
begin
 ucStatus := 0;
 udSamplesReceived := 0;
 udSamplesMax := 0;
 ulNElements := 0;

 // Disable this timer
 tmrSampling.Enabled := false;

 if cNmx.Sampling_GetStatus_1(pHandleNmx, ucStatus, ulNElements, udSamplesReceived, udSamplesMax) = NST_SUCCESS then begin
 // Use status data, e.g. display it on the GUI.

 end;

 // Re-enable this timer
 tmrSampling.Enabled := true;
end;

C# / .Net

private void tmrSampling_Tick(object sender, EventArgs e)
{
 /* Disable this timer */
 tmrSampling.Enabled = false;

 Byte ucStatus = 0;
 UInt32 ulNElements = 0;
 UInt64 udSamplesReceived = 0;
 UInt64 udSamplesMax = 0;
 if (cNmx.Sampling_GetStatus_1(pDevice, ref ucStatus, ref
ulNElements, ref udSamplesReceived, ref udSamplesMax) ==
NMX_MSTATUS.SUCCESS)
 {
 /* Use status data, e.g. display it on the GUI. */
 }

 /* Re-enable this timer */
 tmrSampling.Enabled = true;
}

4.4.5.5.2 Sampling notifications

Notifications are very useful to get informed about any changes of the

sampling. For a complete list of all available notifications, please consult the

chapter "Notifications ".176

279

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

To receive the notifications, these must be registered. Depending on the

selected notification type (messages or callbacks), a message handler or a

callback function must be implemented.

In the following sample code, message based notifications are used.

C / C++

// Define Message. In VisualStudio, WM_USER is defined in
WinUser.h as:
// #define WM_USER 0x0400
#define WM_MESSAGE_SAMPLING_NEWDATA (WM_USER +
NMXNOTIFY_SAMPLING_NEW_DATA) // Message for "new
sampling data" received
#define WM_MESSAGE_SAMPLING_ALLRECEIVED (WM_USER +
NMXNOTIFY_SAMPLING_ALL_DATA_RECEIVED) // Message for "all
sampling data has been received"
#define WM_MESSAGE_SAMPLING_FINISHED (WM_USER +
NMXNOTIFY_SAMPLING_FINISHED) // Message for
"sampling is finished"
#define WM_MESSAGE_SAMPLING_ERROR (WM_USER +
NMXNOTIFY_SAMPLING_ERROR) // Message for
"sampling error"
#define WM_MESSAGE_SAMPLING_BUFFER_OVERFLOW (WM_USER +
NMXNOTIFY_SAMPLING_BUFFER_OVERFLOW) // Message for
"sampling buffer overflow in DLL"
#define WM_MESSAGE_SAMPLING_TIMEOUT (WM_USER +
NMXNOTIFY_SAMPLING_TIMEOUT) // Message for
"sampling: timeout receiving data"

// ###-> Register notifications, e.g. directly after
connecting.
if (NMX_RegisterMessage_1(pHandleNmx,
NMXNOTIFY_SAMPLING_NEW_DATA,
static_cast<HWND>(Handle.ToPointer()),
WM_MESSAGE_SAMPLING_NEWDATA, 0, 0) != NST_SUCCESS) {

// Handle error
}
if (NMX_RegisterMessage_1(pHandleNmx,
NMXNOTIFY_SAMPLING_ALL_DATA_RECEIVED,
static_cast<HWND>(Handle.ToPointer()),
WM_MESSAGE_SAMPLING_ALLRECEIVED, 0, 0) != NST_SUCCESS) {

// Handle error
}
if (NMX_RegisterMessage_1(pHandleNmx,
NMXNOTIFY_SAMPLING_FINISHED,

280

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

static_cast<HWND>(Handle.ToPointer()),
WM_MESSAGE_SAMPLING_FINISHED, 0, 0) != NST_SUCCESS) {

// Handle error
}
if (NMX_RegisterMessage_1(pHandleNmx, NMXNOTIFY_SAMPLING_ERROR,
static_cast<HWND>(Handle.ToPointer()),
WM_MESSAGE_SAMPLING_ERROR, 0, 0) != NST_SUCCESS) {

// Handle error
}
if (NMX_RegisterMessage_1(pHandleNmx,
NMXNOTIFY_SAMPLING_BUFFER_OVERFLOW,
static_cast<HWND>(Handle.ToPointer()),
WM_MESSAGE_SAMPLING_BUFFER_OVERFLOW, 0, 0) != NST_SUCCESS) {

// Handle error
}
if (NMX_RegisterMessage_1(pHandleNmx,
NMXNOTIFY_SAMPLING_TIMEOUT,
static_cast<HWND>(Handle.ToPointer()),
WM_MESSAGE_SAMPLING_TIMEOUT, 0, 0) != NST_SUCCESS) {

// Handle error
}

// ###-> Implement message handler
// Please note: Keep the code in the message handler as short
as possible.
// Do not update the GUI from within the message handlers.
protected: virtual void WndProc(Message% m) override
{

/* Listen for operating system messages. */

switch (m.Msg)

{

case WM_MESSAGE_SAMPLING_NEWDATA:

break;

case WM_MESSAGE_SAMPLING_ALLRECEIVED:

break;

case WM_MESSAGE_SAMPLING_FINISHED:

break;

case WM_MESSAGE_SAMPLING_ERROR:

break;

case WM_MESSAGE_SAMPLING_BUFFER_OVERFLOW:

break;

case WM_MESSAGE_SAMPLING_TIMEOUT:

break;

281

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

default:

/* Pass all standard messages to the GUI form. */

Form::WndProc(m);

break;

}
}

Delphi

// Define Message for "new static data available"
const WM_MESSAGE_NMX_SAMPLING_NEW_DATA = WM_USER + NMXNOTIFY_SAMPLING_NEW_DATA;
 WM_MESSAGE_NMX_SAMPLING_FINISHED = WM_USER + NMXNOTIFY_SAMPLING_FINISHED;
 WM_MESSAGE_NMX_SAMPLING_ALL_DATA_RECEIVED = WM_USER + NMXNOTIFY_SAMPLING_ALL_DATA_RECEIVED;
 WM_MESSAGE_NMX_SAMPLING_ERROR = WM_USER + NMXNOTIFY_SAMPLING_ERROR;
 WM_MESSAGE_NMX_SAMPLING_BUFFER_OVERFLOW = WM_USER + NMXNOTIFY_SAMPLING_BUFFER_OVERFLOW;
 WM_MESSAGE_NMX_SAMPLING_TIMEOUT = WM_USER + NMXNOTIFY_SAMPLING_TIMEOUT;

// Declaration of message handler. Integrate it into the class declarations.
procedure OnMessageSamplingNewData(var Msg: TMessage); message WM_MESSAGE_NMX_SAMPLING_NEW_DATA;
procedure OnMessageSamplingFinished(var Msg: TMessage); message WM_MESSAGE_NMX_SAMPLING_FINISHED;
procedure OnMessageSamplingAllDataReceived(var Msg: TMessage); message WM_MESSAGE_NMX_SAMPLING_ALL_DATA_RECEIVED;
procedure OnMessageSamplingError(var Msg: TMessage); message WM_MESSAGE_NMX_SAMPLING_ERROR;
procedure OnMessageSamplingBufferOverflow(var Msg: TMessage); message WM_MESSAGE_NMX_SAMPLING_BUFFER_OVERFLOW;
procedure OnMessageSamplingTimeout(var Msg: TMessage); message WM_MESSAGE_NMX_SAMPLING_TIMEOUT;

// ###-> Register notification, e.g. directly after connecting.
if NMX_RegisterMessage_1(pNmxHandle,

NMXNOTIFY_SAMPLING_NEW_DATA, MainForm.Handle,
WM_MESSAGE_NMX_SAMPLING_NEW_DATA, 0, 0) <> NST_SUCCESS then
begin

 // Registering notification failed. Do some error handling
end;
if NMX_RegisterMessage_1(pNmxHandle,

NMXNOTIFY_SAMPLING_FINISHED, MainForm.Handle,
WM_MESSAGE_NMX_SAMPLING_FINISHED, 0, 0) <> NST_SUCCESS then
begin

 // Registering notification failed. Do some error handling
end;
if NMX_RegisterMessage_1(pNmxHandle,

NMXNOTIFY_SAMPLING_ALL_DATA_RECEIVED, MainForm.Handle,
WM_MESSAGE_NMX_SAMPLING_ALL_DATA_RECEIVED, 0, 0) <>
NST_SUCCESS then begin

 // Registering notification failed. Do some error handling
end;
if NMX_RegisterMessage_1(pNmxHandle,

NMXNOTIFY_SAMPLING_ERROR, MainForm.Handle,
WM_MESSAGE_NMX_SAMPLING_ERROR, 0, 0) <> NST_SUCCESS then
begin

 // Registering notification failed. Do some error handling
end;
if NMX_RegisterMessage_1(pNmxHandle,

NMXNOTIFY_SAMPLING_BUFFER_OVERFLOW, MainForm.Handle,

282

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

WM_MESSAGE_NMX_SAMPLING_BUFFER_OVERFLOW, 0, 0) <>
NST_SUCCESS then begin

 // Registering notification failed. Do some error handling
end;
if NMX_RegisterMessage_1(pNmxHandle,

NMXNOTIFY_SAMPLING_TIMEOUT, MainForm.Handle,
WM_MESSAGE_NMX_SAMPLING_TIMEOUT, 0, 0) <> NST_SUCCESS then
begin

 // Registering notification failed. Do some error handling
end;

// ###-> Implement message handlers
// Please note: Keep the code in the message handlers as short as possible.
// Do not update the GUI from within the message handlers.

C# / .Net

// Define Messages. In VisualStudio, WM_USER is 0x0400
const int WM_USER = 0x400;
const int WM_MESSAGE_SAMPLING_NEW_DATA = WM_USER + 0x20;
const int WM_MESSAGE_SAMPLING_FINISHED = WM_USER + 0x21;
public const int WM_MESSAGE_SAMPLING_ALL_DATA_RECEIVED =
WM_USER + 0x22;
public const int WM_MESSAGE_SAMPLING_ERROR = WM_USER + 0x28;
public const int WM_MESSAGE_SAMPLING_BUFFER_OVERFLOW = WM_USER
+ 0x29;
public const int WM_MESSAGE_SAMPLING_TIMEOUT = WM_USER + 0x2A;

// ###-> Register notifications, e.g. directly after
connecting.
NMX_MSTATUS tStatus = NMX_MSTATUS.UNKNOWN;
tStatus = cNmx.RegisterMessage_1(pDevice,
NMX_NOTIFICATION.SAMPLING_NEW_DATA, Handle,
WM_MESSAGE_SAMPLING_NEW_DATA, 0, 0);
if (tStatus != NMX_MSTATUS.SUCCESS) { /* Do some error handling
*/ }
tStatus = cNmx.RegisterMessage_1(pDevice,
NMX_NOTIFICATION.SAMPLING_ALL_DATA_RECEIVED, Handle,
WM_MESSAGE_SAMPLING_ALL_DATA_RECEIVED, 0, 0);
if (tStatus != NMX_MSTATUS.SUCCESS) { /* Do some error handling
*/ }
tStatus = cNmx.RegisterMessage_1(pDevice,
NMX_NOTIFICATION.SAMPLING_FINISHED, Handle,
WM_MESSAGE_SAMPLING_FINISHED, 0, 0);
if (tStatus != NMX_MSTATUS.SUCCESS) { /* Do some error handling
*/ }
tStatus = cNmx.RegisterMessage_1(pDevice,
NMX_NOTIFICATION.SAMPLING_ERROR, Handle,
WM_MESSAGE_SAMPLING_ERROR, 0, 0);

283

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

if (tStatus != NMX_MSTATUS.SUCCESS) { /* Do some error handling
*/ }
tStatus = cNmx.RegisterMessage_1(pDevice,
NMX_NOTIFICATION.SAMPLING_BUFFER_OVERFLOW, Handle,
WM_MESSAGE_SAMPLING_BUFFER_OVERFLOW, 0, 0);
if (tStatus != NMX_MSTATUS.SUCCESS) { /* Do some error handling
*/ }
tStatus = cNmx.RegisterMessage_1(pDevice,
NMX_NOTIFICATION.SAMPLING_TIMEOUT, Handle,
WM_MESSAGE_SAMPLING_TIMEOUT, 0, 0);
if (tStatus != NMX_MSTATUS.SUCCESS) { /* Do some error handling
*/ }

// ###-> Implement message handler
// Please note: Keep the code in the message handler as short
as possible.
// Do not update the GUI from within the message handlers.
protected override void WndProc(ref Message m)
{
 // Listen for operating system messages.
 switch (m.Msg)
 {
 case WM_MESSAGE_SAMPLING_NEW_DATA:
 break;

 case WM_MESSAGE_SAMPLING_FINISHED:
 break;

 case WM_MESSAGE_SAMPLING_ALL_DATA_RECEIVED:
 break;

 case WM_MESSAGE_SAMPLING_ERROR:
 break;

 case WM_MESSAGE_SAMPLING_BUFFER_OVERFLOW:
 break;

 case WM_MESSAGE_SAMPLING_TIMEOUT:
 break;

 default:
 /* Pass all standard messages to the GUI form. */
 base.WndProc(ref m);
 break;
 }
}

284

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

4.4.5.6 Start position triggered sampling

Instead of recording the measured values at constant time intervals, the

position-triggered measurement enables the acquisition at constant position

intervals, e.g. in 0.1° or 10µm distances.

If position-triggered sampling is started, the NMX DLL internally starts an

endless time-triggered sampling via the low-level sampling functions. With

the Parameter ulSamplingSpeed, the speed of this sampling is defined.

Position triggered sampling then reads all the sampled data and processes it.

The processed data is then read by the application / measurement software.

The accuracy of the position distance depends on the time interval used for

sampling.

This is important to know, since the underlying endless time-triggered

sampling will only work endless, as long as the sampled data can be

transferred from the measurement system to the PC in realtime. For many

applications, 1000 samples/s = 1000 µs should be enough and these can

almost always be transferred in realtime. In case a higher speed is required,

please consult the chapter "Sampling Speed with Irinos " for a more

detailed information.

Setting up the trigger

For position triggered sampling, it is required to provide the NMX DLL

information about the trigger. That information is:

1. Which measurement channel does provide the position information? ->

Which encoder or probe does provide the position information, which is

required to identify the trigger points?

In the function call of NMX_Sampling_PreparePosition_1 , this is the

parameter ulTriggerChannelNumber.

2. Where / at which position shall triggering be started?

In the function call of NMX_Sampling_PreparePosition_1 , this is the

parameter fdStart.

3. What is the position distance between two trigger points?

In the function call of NMX_Sampling_PreparePosition_1 , this is the

parameter fdDistance.

Optionally, the unit for the parameters fdStart and fdDistance can be set via

a scale factor. In the function call of NMX_Sampling_PreparePosition_1 ,

this is the parameter fdScale. If fdScale = 1, then no scaling is used.

141

229

229

229

229

285

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

With these parameters, sometimes several possibilities lead to the same

goal. Thus not every possibility for setting up the trigger can be discussed

here. However, following two examples are provided:

Example 1:

A measurement system consists of 8 inductive + 4 incremental measurement

channels. A rotational incremental encoder is connected to the 2nd

incremental channel. The encoder has a resolution of 400000 increments per

revolution. Measurement shall be started at 0° and end after one rotation

with a position distance of 0.5°. Then the following parameters could be

used:

ulTriggerChannelNumber = 9; // 10-1 = 9, since channel numbering is

0-based

fdScale = 400000.0 / 360.0; // = 1111.1111

fdStart = 0.0;

fdDistance = 0.5;

udMaxSamples = 360.0 / 0.5; // = 720.0

Example 2:

A measurement system consists of 4 incremental measurement channels + 32

inductive measurement channels. A linear encoder is connected to the 1st

incremental channel. Measurement shall be started at the position 7500

increments towards the negative direction with a position distance of 100

increments. Measurement shall be stopped at -423600 Then the following

parameters could be used:

ulTriggerChannelNumber = 0; // 1-1 = 0, since channel numbering is 0-

based

fdScale = 1.0; // No scale factor is used

fdStart = 7500.0;

fdDistance = -100.0; // Minus due to negative direction

udMaxSamples = 4312; // = ((7500 - (-423600) / 100) + 1

286

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Coding position-triggered sampling
Basically, position-triggered sampling is used in the same way as standard

low-level sampling. Therefore most of the low-level functions can be

used:

· NMX_Sampling_GetMaxSpeed_1

· NMX_Sampling_Reset_1

· NMX_Sampling_AddChannelsAll_1

· NMX_Sampling_AddChannel_1

· NMX_Sampling_AddDigiInAll_1

· NMX_Sampling_AddDigiInByte_1

· NMX_Sampling_AddDigiOutAll_1

· NMX_Sampling_AddDigiOutByte_1

· NMX_Sampling_Start_1

· NMX_Sampling_Stop_1

· NMX_Sampling_ReadColumn32_1

· NMX_Sampling_ReadRow32_1

· NMX_Sampling_GetStatus_1

The major difference is that the function

NMX_Sampling_PreparePosition_1 instead of the function

NMX_Sampling_PrepareTime_1 is used.

The use of notifications is the same as with low-level sampling.

As a result of this, the following other HowTo's can be used as well:

· Start endless time-based sampling , except that

NMX_Sampling_PrepareCustomTFT_1 must be used.

· Start time-limited sampling , except that

NMX_Sampling_PrepareCustomTFT_1 must be used.

· Stop sampling

· Reading sampled data

· Get sampling status

Following one example is provided for starting position-triggered sampling:

209

209

210

211

212

214

215

216

217

220

221

221

224

226

229

218

176

252

232

259

232

266

267

277

287

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

C / C++: Start with all measurement channels, 250µs sample period,

first encoder as trigger source, scale factor 200.0, start position 0°,

distance 0.5° and stop after one rotation

unsigned long ulNElements = 0;

// ###-> 1. Reset list of sampling elements
if (NMX_Sampling_Reset_1(pHandle) == NST_SUCCESS) {

// List of sampling elements has been reset successfully.
}
else {

// Failed resetting the list of sampling elements.

// Do some error handling.

return;
}

// ###-> 2/3. Add sampling elements
if (NMX_Sampling_AddChannelsAll_1(pHandle, &ulNElements) ==
NST_SUCCESS) {

// Successfully added all sampling elements
}
else {

// Failed adding sampling elements

// Do some error handling.

return;
}

NMX_STATUS NMX_Sampling_PreparePosition_1(

NMX_PHANDLE pHandle,

unsigned long ulSamplePeriod,

unsigned long ulArrayLength,

unsigned long long udMaxSamples,

unsigned long ulTriggerChannelNumber,

double fdScale,

double fdStart,

double fdDistance);

// ###-> 4. Prepare sampling
if (NMX_Sampling_PreparePosition_1(pHandle, 250/*µs*/, 720,
720/*MaxSamples*/, 0 /*first channel*/, 200.0, 0.0, 0.5) ==
NST_SUCCESS) {

// Sampling successfully prepared
}
else {

// Failed preparing sampling

288

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

// Do some error handling.

return;
}

// ###-> 5. Start sampling
if (NMX_Sampling_Start_1(pHandleNmx) == NST_SUCCESS) {

// Start successful.
}
else {

// Failed starting sampling

// Do some error handling.

return;
}

4.4.5.7 Start TFT high-level sampling

TFT sampling is similar to time-limited sampling, but provides 3 features.

These are

· triggering by a digital input,

· applying an arithmetic average filter on the measurement values and

· providing additional samples, called "tail samples", after the sampling has

been stopped.

Each of them can be disabled individually.

If TFT sampling is started, the NMX DLL internally starts an endless time-

triggered sampling via the low-level sampling functions. With the Parameter

ulSamplingSpeed, the speed of this sampling is defined. TFT sampling then

reads all the sampled data and processes it. The processed data is then read

by the application / measurement software.

This is important to know, since the underlying endless time-triggered

sampling will only work endless, as long as the sampled data can be

transferred from the measurement system to the PC in realtime. For many

applications, 1000 samples/s = 1000 µs should be enough and these can

almost always be transferred in realtime. In case a higher speed is required,

please consult the chapter "Sampling Speed with Irinos " for a more

detailed information.

Triggering

TFT sampling provides several possibilities to start / stop the recording of

measurement values via a digital input. The trigger modes "Edge", "Level",

141

289

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

"Edge Start" and "Level Once" are available. For more information about

these, consult the chapter "Trigger Modes ".

Here are further notes:

· Triggering can be disabled completely by using the dummy trigger mode

"Off".

· Sampling can always be stopped manually by calling

NMX_Sampling_Stop_1 . The digital input then has no effect.

· Besides using a digital input for triggering, all digital input data can still be

included into the list of sampling elements (see

NMX_Sampling_AddDigiInAll_1 and

NMX_Sampling_AddDigiInByte_1).

Filtering

Via an integrated arithmetic average filter, the measurement values can be

smoothened. The results are provided to the user application / measurement

software.

Setting the filter is done via the parameters ulSamplePeriod and

ulFilterPeriod:

· If ulSamplePeriod = ulFilterPeriod, then filtering is disabled.

· ulFilterPeriod must be an integer multiple of ulSamplePeriod.

Example for ulSamplePeriod = 1000 (=1 ms):

Valid values for ulFilterPeriod are 1000, 2000, 3000, 4000, 5000, ..., 10000.

But for example 2500 would be invalid.

·

Example:

ulSamplePeriod = 1000, which is 1ms or 1000 samples/s.

ulFilterPeriod = 5000, which is 5ms or 200 samples/s.

-> The arithmetic average of 5 incoming samples is calculated and provided

to the application / measurement software. This means the application

receives 200 samples/s.

Note: Digital inputs or outputs are never filtered.

Tail values

163

221

214

215

290

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

Tail values are recorded after stop of sampling, no matter how the stop

condition occurred. Typically they are used to apply an additional filter in the

application / measurement software.

The parameter ulNTailSamples defines the number of samples recorded after

stop. If this value is 0, then recording tail values is disabled.

Tail values can also be used with endless sampling. After endless sampling is

stopped manually via NMX_Sampling_Stop_1 , the tail values will be

recorded.

Coding TFT high-level sampling
Basically, TFT high-level sampling is used in the same way as standard low-

level sampling. Therefore most of the low-level functions can be used:

· NMX_Sampling_GetMaxSpeed_1

· NMX_Sampling_Reset_1

· NMX_Sampling_AddChannelsAll_1

· NMX_Sampling_AddChannel_1

· NMX_Sampling_AddDigiInAll_1

· NMX_Sampling_AddDigiInByte_1

· NMX_Sampling_AddDigiOutAll_1

· NMX_Sampling_AddDigiOutByte_1

· NMX_Sampling_Start_1

· NMX_Sampling_Stop_1

· NMX_Sampling_ReadColumn32_1

· NMX_Sampling_ReadRow32_1

· NMX_Sampling_GetStatus_1

The major difference is that the function

NMX_Sampling_PrepareCustomTFT_1 instead of the function

NMX_Sampling_PrepareTime_1 is used.

The use of notifications is the same as with low-level sampling.

As a result of this, the following other HowTo's can be used as well:

221

209

209

210

211

212

214

215

216

217

220

221

221

224

226

232

218

176

291

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

· Start endless time-based sampling , except that

NMX_Sampling_PrepareCustomTFT_1 must be used.

· Start time-limited sampling , except that

NMX_Sampling_PrepareCustomTFT_1 must be used.

· Stop sampling

· Reading sampled data

· Get sampling status

Following one example is provided for starting TFT high-level sampling:

C / C++: Start with all measurement channels, 1ms sample period, 5ms

filter period, trigger "Level Once" and 4 Tail values

unsigned long ulNElements = 0;

// ###-> 1. Reset list of sampling elements
if (NMX_Sampling_Reset_1(pHandle) == NST_SUCCESS) {

// List of sampling elements has been reset successfully.
}
else {

// Failed resetting the list of sampling elements.

// Do some error handling.

return;
}

// ###-> 2/3. Add sampling elements
if (NMX_Sampling_AddChannelsAll_1(pHandle, &ulNElements) ==
NST_SUCCESS) {

// Successfully added all sampling elements
}
else {

// Failed adding sampling elements

// Do some error handling.

return;
}

// ###-> 4. Prepare sampling
if (NMX_Sampling_PrepareCustomTFT_1(pHandle, 1000/*µs*/,
5000/*µs*/, 10000, 10000/*MaxSamples*/, 4, 0, 3, 4, 2) ==
NST_SUCCESS) {

// Sampling successfully prepared
}

252

232

259

232

266

267

277

292

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

NmxDLL Reference Guide

else {

// Failed preparing sampling

// Do some error handling.

return;
}

// ###-> 5. Start sampling
if (NMX_Sampling_Start_1(pHandleNmx) == NST_SUCCESS) {

// Start successful.
}
else {

// Failed starting sampling

// Do some error handling.

return;
}

293

Irinos EC

 © 2019-2020 Messtechnik Sachs GmbH

Index

- A -
Absolute time 114

Auto-MDI(X) 97

- B -
Box 183, 184

- C -
Channel 166, 170, 188, 189, 190, 211, 212

Connection 162, 173, 175, 176, 239, 241

- D -
Default Gateway 98, 105

DHCP 91, 100

Diagnostic memory 119

Digital I/Os 195, 197, 205, 206, 214, 215, 216, 217

Dynamic measurement 117

- E -
Ethernet 91

- F -
Firmware update 121

- G -
Gateway 105

- I -
Inventory 112

IP address 98, 102, 104, 105

IP configuration 105

- M -
MAC address 104

Msc.cfg 94

MscDll 94

- S -
Safety instructions 89

Static measurement 116

Subnet mask 98, 102, 104, 105

- V -
Version number 120

	Table of Contents
	Overview
	Irinos EC Users Manual
	Introduction
	Revision History
	Legal Notes
	Terms and conditions of use for software & documentation
	Warning notice system
	Qualified personnel
	Disclaimer

	Preface
	Safety Instructions

	System Overview
	Modularity
	Syncronization & Speed
	Master vs. Slave
	Power Supply

	Product Descriptions
	Basic Composition Irinos-EC - Box with EC-Link Interface
	EC-TFV for inductive probes

	Pin assignments
	Power supply 24V
	Ethernet

	Assembly
	Checking the delivery
	Mounting location
	Mounting
	Wiring
	EC-Link Wiring
	Connecting Ethernet
	Connecting the power supply

	Insert Measuring Modules

	Setup & First Steps
	Box addressing
	Network configuration
	Irinos-Tool
	Web-Server

	Software Interface
	NmxDLL Quick Overview
	ASCII- / Telnet-Interface
	MscDLL Quick Overview

	Troubleshooting & First Aid
	Diagnostic events
	Diagnostic Memory
	First Aid "Network Connection"
	Maintenance, Cleaning & Disposal

	Application Notes
	Incremental Encoders
	Referencing for absolute measurement
	Input frequency
	Interpolation (only 1Vpp)

	Power consumption
	Storing data in the non-volatile memory

	Specifications & Dimensions
	Common specifications

	Irinos Tool Users Manual
	Introduction
	Imprint
	Revision history
	Terms of use for software & documentation
	Preface
	Purpose
	Scope of this manual
	Intended use
	Required knowledge
	Further documentation
	Firmware & Software version

	About this help
	System overview

	Quick start guide
	Requirements
	PC network settings
	Irinos configuration and connection check

	PC network connection
	Ethernet connection
	Network interfaces
	Network settings
	IP configuration using DHCP
	IP configuration without DHCP

	Irinos-Tool
	General
	Installation
	Starting the Irinos-Tool
	IP configuration
	Direct IP settings
	Checking the connection via the MscDll
	Channel Assignment / Selecting incremental input type
	Inventory
	Setting date/time
	Event configuration

	Static measurement
	Dynamic measurement
	Digital in- & outputs
	Diagnostic memory
	Firmware update
	Version numbers
	Executing the update

	Incremental channel diagnostics
	Live view (only 1Vpp)
	History (only 1Vpp)

	NmxDLL Reference Guide
	Introduction
	Imprint
	Revision history
	Legal notes
	Terms of use for documentation & software
	Qualified personnel
	Disclaimer

	Preface
	Purpose
	Scope of this reference manual
	Required knowledge
	Further documentation

	Nmx DLL Overview
	Static vs. Sampling
	Sampling Speed with Irinos
	Data Types
	Technical Background
	Limitations
	Hardware Requirements
	Versions
	INI-File
	.NET Wrapper DLL

	API (programming interface)
	Function calls overview
	Function Return Codes (NMX_STATUS)
	Connection Handle
	Trigger Modes
	Miscellaneous
	NMX_GetDllVersion_1
	NMX_SystemReset_1
	NMX_ChannelSetParameter_1
	NMX_ChannelSetConfig_1

	Connecting / Disconnecting
	NMX_DeviceIPv4Open_1
	NMX_DeviceClose_1

	Notifications
	NMX_RegisterMessage_1
	NMX_RegisterCallback_1

	Get device information
	NMX_GetBoxCount_1
	NMX_GetBoxInfo_1
	NMX_UpdateChannelInfo_1
	NMX_GetChannelCount_1
	NMX_GetChannelInfo_1
	NMX_GetDigitalInputInfo_1
	NMX_GetDigitalOutputInfo_1

	Static Measurement (Non-Realtime)
	NMX_StaticGet32_1
	NMX_StaticSetMedianDepth_1
	NMX_SetOutputs_1
	NMX_DisableOutputUpdate_1
	NMX_DigitalIoConfig_1
	NMX_DigitalOutputsGetState_1

	Sampling LowLevel (Time-Triggered Realtime Measurement)
	NMX_Sampling_GetMaxSpeed_1
	NMX_Sampling_Reset_1
	NMX_Sampling_AddChannelsAll_1
	NMX_Sampling_AddChannel_1
	NMX_Sampling_AddDigiInAll_1
	NMX_Sampling_AddDigiInByte_1
	NMX_Sampling_AddDigiOutAll_1
	NMX_Sampling_AddDigiOutByte_1
	NMX_Sampling_PrepareTime_1
	NMX_Sampling_Start_1
	NMX_Sampling_Stop_1
	NMX_Sampling_ReadColumn32_1
	NMX_Sampling_ReadRow32_1
	NMX_Sampling_GetStatus_1

	Sampling HighLevel (Application-specific Realtime Measurement)
	NMX_Sampling_PreparePosition_1
	NMX_Sampling_PrepareCustomTFT_1

	Diagnostics
	NMX_DiagClearEvent_1
	NMX_DiagGetEventText_1
	NMX_SetDateTime_1

	HowTo
	Small Measurement Application
	Establishing a connection
	Closing a connection
	Reading static data
	Cyclically (Polling)
	Event based

	Sampling
	Start endless time-based sampling
	Start time-limited sampling
	Stop sampling
	Reading sampled data
	Read Column-Wise
	Read Row-Wise

	Get sampling status
	Poll sampling status
	Sampling notifications

	Start position triggered sampling
	Start TFT high-level sampling

	Index

